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Control vs formal verification
@ software programs

@ dynamical models for control

x€eR", G CcR",ie{1,23} PR
Vx € gi’ x+ = fi(x) x = rand(t,..., 10);
c=1;

while (x > 0) {

r = Bernoulli(0.5);
91 if (c==18& 1) {x=2xx }
else if (c == 1 && !r) { c++; }
\ \l else { x =x - 1; }
G (% )
N
o safety, @ invariance,
reachability, termination,
stability assertion check/violation
@ invariants & barrier certificates, @ program and loop invariants,
reach-set computation, reach over CFG, abstract int,
Lyapunov functions ranking functions and progress
measures
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Models

@ dynamical/transition systems and reactive programs

xe€S$,0€®ace A
xt = f(x,0,a)

@ X - states/variables (possibly hybrid)
@ 0 - uncertainty (lack of determinism)
@ a/u - action, input, decisions
e non-environmental: adversarial (demonic) vs agential (angelic)
o general-space MDPs! 2 3 or SHS*

lBertsekas & Shreve, “Stochastic optimal control: The discrete-time case,” Athena Scientific, 1996
2Herna’m:Iez-Lerrna & Lasserre, “Discrete-time Markov control processes,” Springer, 1996

3Meyn & Tweedie, “Markov chains and stochastic stability,” Springer, 1993

4

A. Lavaei et.al., "Automated Verification and Synthesis of Stochastic Hybrid Systems: A Survey,” Automatica, v 146, 2022
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Cyber-Physical Systems: from code to control

@ complex embedded systems

@ interleaving of
cyber/digital components with
physical/analogue dynamics

@ dynamics, computation, and control

@ safety-critical applications

sound and automated verification

AN

correct-by-design control synthesis

av.web.ox.ac.uk Neural Proofs



Properties: Encoding rich dynamical behaviour

@ as specifications, requirements for verification (e.g., safety)
@ as tasks, objectives for control design (e.g., reachability)
@ without manual reward engineering - “rewards are NOT enough”

useful also in model-free (e.g., RL) sequential decision making

A. Abate, oxcav.web.ox.ac.uk



Properties: Encoding rich dynamical behaviour

xeR"
G CRYie{l,...m}
VxeG, xt=fix)

e
&
%
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Properties: Encoding rich dynamical behaviour

x € R"

xt = f(x)
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Properties: Encoding rich dynamical behaviour

x € R"
G CR"ie{l,.. .m)
+
X" = f(x)
G
G 9
xt = f(x) xt = f(x)

Xg — X1 — Xy —
Gxy — Gx — Gx, =

@ model's behaviour (cf. Jan Willems) <+ formal language

A. Abate, oxcav.web.ox.ac.uk




Properties: Encoding rich dynamical behaviour

@ consider (class of) properties/requirements/specifications

VxgeZ, ITeN, Vke{0,1,...,T—1}, VYr>T:
xTeg/ 7 xTEF
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Properties: Encoding rich dynamical behaviour

@ consider (class of) properties/requirements/specifications

Vxo € Z, IT € N, vk e {0,1,...,T—1}, VT >T:

xr €3, , xr € F
‘lﬁggwgg 2 QJ

a: Stability b: ROA  c¢: Safety d: SWA e: Reachability f: RWA g: RSWA : RAR

@ class encompasses stability, invariance, safety, reachability, reach-avoid, ...

(cf. safe/co-safe fragment in linear temporal logic)

A. Abate, oxcav.web.ox.ac.uk



Properties: Encoding rich dynamical behaviour

@ consider (class of) properties/requirements/specifications

Vxo€Z, AT €N, vke {0,1,..., T -1}, VT>T:
XTGQ, 7 XTGI

RIECT G d &

a: Stability b: ROA ¢ Safety d: SWA e: Reachability f: RWA g: RSWA h: RAR

@ connections to:

e temporal logics
e formal languages
e automata theory

@ beyond obligation, to full reactivity (co-horizon specs)

A. Abate, oxcav.web.ox.ac.uk Neural Proofs



Properties: Encoding rich dynamical behaviour

Ooc. AOOG, AO-U

AU

A =Gy AU

A- ﬁl/f

“Ga A

Gy AU
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Synthesis for verification and design

from verification/analysis

to model design, or synthesis of controller (scheduler, policy, strategy)
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Synthesis for verification and design

from verification/analysis

to model design, or synthesis of controller (scheduler, policy, strategy)

this line of research:
consider broad model class (co-state g-MDP's)
propose two general, automated, and formal approaches:
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Synthesis for verification and design

from verification/analysis

to model design, or synthesis of controller (scheduler, policy, strategy)

this line of research:
consider broad model class (co-state g-MDP's)
propose two general, automated, and formal approaches:

@ synthesis of certificates for verification, and of controllers+-certificates
@ synthesis of abstractions, for verification and design [ThB03, FrB02]

A. Abate, oxcav.web.ox.ac.uk



Synthesis for verification and design

from verification /analysis

to model design, or synthesis of controller (scheduler, policy, strategy)

this line of research:
consider broad model class (co-state g-MDP's)
propose two general, automated, and formal approaches:

Neural Proofs - Formal Synthesis of Neural Certificates
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Decision problems: SAT and SMT

@ SAT is a decision problem (yes/no question)
@ problem: to find satisfying assignment of Boolean function

@ e.g., assume Boolean x;, check

dxq, %9, %3 : (Xl V ﬁ9(2) N (—'Xl VxpV X3) A —x1
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Decision problems: SAT and SMT

@ SAT is a decision problem (yes/no question)
@ problem: to find satisfying assignment of Boolean function

@ e.g., assume Boolean x;, check

dxq, %9, %3 : (x1 V ﬁxz) A (ﬁxl VxpyV JC3) N =X

SMT is a decision problem for a logical formula within a theory

instance: theory of non-linear arithmetics over real closed fields

e.g., assume reals x; € R, check

dxq,x0: x12>20=3x1+2x+1>0

A. Abate, oxcav.web.ox.ac.uk



Decision problems: SAT and SMT

@ SAT is a decision problem (yes/no question)
@ problem: to find satisfying assignment of Boolean function

@ e.g., assume Boolean x;, check

dxq, %9, x3 : (x1 vV ﬂXz) VAN (—|X1 Vxa V Xg) N —xqp

SMT is a decision problem for a logical formula within a theory

consider harder problem (2nd-order logic): assume reals x; € IR,
seek function F: R x R — R, s.t.
HF(xl, xz),Vxl, X2 &
F(X],Xz) > x1 A F(xl,xz) > xo N\ (F(Xl,XZ) = X1 \/F(x1,x2) = Xz)

(spoiler: F(xq,xp) = max{xq,xp})

A. Abate, oxcav.web.ox.ac.uk



Neural proofs and certificates

neural proofs = 1) proof rules + 2) certificates synthesis

1) proof rules = spec-dependent algebraic conditions on model's dynamics
2) certificate synthesis

A. Abate, oxcav.web.ox.ac.uk



Neural proofs and certificates

neural proofs = 1) proof rules + 2) certificates synthesis

1) proof rules = spec-dependent algebraic conditions on model's dynamics
2) certificate synthesis, 2a) deductive vs 2b) inductive

2a) deductive, i.e. via logic, SMT
2b) inductive: neural networks + SMT

A. Abate, oxcav.web.ox.ac.uk



Lyapunov functions for stability
e consider x* = f(x), assume x, € R" is an equilibrium, f(x.) = x,
@ ensure (asymptotic) stability of x, € D C R” (assume D given)

@ by finding R-valued Lyapunov function V(x), satisfying

© lower bound:
V(xe) =0 (1)

@ positive definiteness:
V(x) >0, Vx e D\ {x¢} (2)

© negative decrease:

V(f(x))—V(x) < —e, Vx e D\ {x.} (e>0) (3)

A. Abate, oxcav.web.ox.ac.uk



Lyapunov functions for stability

e consider x™ = f(x), assume x, € R" is an equilibrium, f(x.) = x,
@ ensure (asymptotic) stability of x, € D C R" (assume D given)
@ by finding IR-valued Lyapunov function V(x), satisfying

@ lower bound:

V(xe) =0 (1)
@ positive definiteness:
V(x) >0, Vx € D\ {x.} (2)
© negative decrease:
V(f(x))—V(x) < —e, Vx € D\ {x.} (e>0) (3)

@ that is, solve following synthesis problem:
JV:D - R st VxeD, conditions (1) A(2)A(3) hold

o feed 2nd-order logical formula above to SMT solver

A. Abate, oxcav.web.ox.ac.uk



Barrier certificates for safety

e consider x* = f(x), along with sets Z (initial) and U (unsafe)
@ ensure there exists no trajectory starting in Z ever entering U

A. Abate, oxcav.web.ox.ac.uk



Barrier certificates for safety
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Barrier certificates for safety

e consider x* = f(x), along with sets Z (initial) and U (unsafe)
@ ensure there exists no trajectory starting in Z ever entering U
e by finding barrier function B(x), satisfying

@ negativity within initial set Z:

B(x) <0, VxeT
@ positivity within unsafe set U:

B(x) >0, Vxe U
@ set invariance property via negative decrease:

B(f(x)) —B(x) <0, Vx € (UUT)

@ again, feed a 2nd-order logical formula to SMT solver

oxcav.web.ox.ac.uk



Ranking functions for termination/halting/reachability

e consider probabilistic program x™ = f(x,w):

while (x > 0):
if prob(0.75) {
x- )

A. Abate, oxcav.web.ox.ac.uk



Ranking functions for termination/halting/reachability

e consider probabilistic program x™ = f(x,w): CKEORD

while (x > 0):
if prob(0.75) {
x- )

@ ensure that, for any x > 0, F(x < 0) holds almost surely (with probability 1)
@ by finding ranking function V(x), satisfying
Q@ V(0)=0
Q@x>0—-V(x)>0
Q@ x>0 E[V(f(x)] <V(x)—e
namely, if x > 0, V(x) decreases in expectation by e (positive constant)

A. Abate, oxcav.web.ox.ac.uk



Ranking functions for termination/halting/reachability

e consider probabilistic program x™ = f(x,w): CKEORD

while (x > 0):
if prob(0.75) {
x- )

@ ensure that, for any x > 0, F(x < 0) holds almost surely (with probability 1)
@ by finding ranking function V(x), satisfying
Q@ V(0)=0
Q@x>0—-V(x)>0
Q@ x>0 E[V(f(x)] <V(x)—e
namely, if x > 0, V(x) decreases in expectation by e (positive constant)

(O —O—O—0—@-

e-dec e-dec e-dec e-dec Halt

e.g., V(x) = x > 0 & decreases in expectation by say € = 3/4

A. Abate, oxcav.web.ox.ac.uk



Counterexample-guided Inductive Synthesis (CEGIS)
f(x),D 1. Learner

generates candidates V' over
v finite set S
T valid 2. Verifier
L Verifi '—' 1% e .
carner e certifies validity on D, or
\_/ .
c provides counterexample(s) ¢

@ inductive synthesis loop

1. sample (finite) set S C D

2. Learner generates V(6,-) via query SMT solver on formula:
30 € © : proof rule holds on points s € S

3. Verifier checks either V(-,x) valid over dense D, or counterexample ¢ :
query SMT solver on formula dc € D : proof rule does not hold on ¢

4. S+ SUc, loop back to 2

@ sound, but not complete: infinite search space (0 € ®) and domain (x € D)

A. Abate, oxcav.web.ox.ac.uk Neural Proofs



Neural Inductive Synthesis

f(x),D 1. Learner
| .
generates candidates V' over
v finite set S
T valid 2. Verifier
L Verifi '—» 1% e .
carner e certifies validity on D, or
\_/ .
c provides counterexample(s) ¢

@ inductive synthesis loop

1. sample (finite) set S C D

2. Learner

3. Verifier checks either V(-,x) valid over dense D, or counterexample ¢ :
query SMT solver on formula dc € D : proof rule does not hold on ¢

4. S+ SUc, loop back to 2

@ sound, but not complete: infinite search space (0 € ®) and domain (x € D)

Neural Proofs
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Neural networks as Lyapunov functions

@ neural nets are general and flexible @
(universal function approximators)
@ Learner trains shallow neural network ‘
V(x) = W2-0’1(W1X+b1) . @ .
w; W,

(W; weights, (07) activation fcns)

@ loss function enforces Lyapunov conditions in (1)+(2) and (3) on points in S:

L(S)=|V(0) |+ Z max{0,—V(s)} + Z max{0, V(f(s)) —V(s) +€}

seS seS

@ loss function L is “pretty good” proxy of synthesis formula

A. Abate, oxcav.web.ox.ac.uk



Neural networks as Lyapunov functions

f(x),D
I
\4
=
valid
Learner @ \
\_/

c

@ surprisingly effectivel Communication Learner <> Verifier is crucial

@ loss function enforces Lyapunov conditions in (1)+(2) and (3) on points in S:

L(S)=|V(0) |+ Z max{0,—V(s)} + Z max{0, V(f(s)) = V(s) +€}

seS seS

@ loss function L is “pretty good” proxy of synthesis formula

A. Abate, oxcav.web.ox.ac.uk



Synthesis of Lyapunov functions - example

10

15 ————112000000 non
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Synthesis of barrier certificates - examples

Barrier Certificate

—-- Unsafe Set Barrier Border
1 Initial Set 20— x N

~-- Unsafe Set

[10] - Linear

Neural Proofs



Synthesis of barrier certificates - examples

Barrier Certificate

—— Initial Set
— = Unsafe Set

>~ 0.00

-025
-0.50 1

-0.75 '

~1.0

Barrier Border

= < >

nitial set |
Unsafe Set

0
-1.00 -0.75 -050 -025 000 025

x

050 075 100

[20] - Softplus




Synthesis of barrier certificates - examples

Barrier Certificate

1 Initial Set Barrier Border
1 Unsafe Set 20T <

[20,20] - Sigmoid, Sigmoid

v.web.ox.ac.uk Neural Proofs



Synthesis of control certificates for complex tasks

@ dynamical models with inputs (a.k.a., external non-determinism)

xt = f(x,u)

— synthesis of “control certificates”

@ modify known synthesis problem:

JV:D—-R st VxeD conditions (1) A (2) A (3) hold

A. Abate, oxcav.web.ox.ac.uk



Synthesis of control certificates for complex tasks

@ dynamical models with inputs (a.k.a., external non-determinism)

xt = f(x,u)

— synthesis of “control certificates”
@ approach:

@ control policies are also NN-templated
@ concurrent synthesis controls and corresponding certificates

A. Abate, oxcav.web.ox.ac.uk Neural Proofs



Synthesis of control certificates for complex tasks
e dynamical models with inputs (a.k.a., external non-determinism)

xt = f(x,u)

— synthesis of “control certificates”

o (back to) broad class of properties/requirements

Vxo € Z, dT €N, vte{0,...,T—1}, vVt >T:

xr € G, X €U, xr € F
7 0 - N
R = (- v

a: Stability b: ROA ¢ Safety d: SWA e: Reachability f: RWA g RSWA h: RAR

A. Abate, oxcav.web.ox.ac.uk



Synthesis of control certificates for complex tasks
e dynamical models with inputs (a.k.a., external non-determinism)

xt = f(x,u)

— synthesis of “control certificates”

Ns  Nu Property Neurons Activations T (s) Success (%)

min P max S

1 2 0 Stability [6] [2] 0.01 (= 0.00)  0.16 (0.15) 1.50 (1.48) 100
2 30 Stability [8] [2] 0.28 (= 0.00)  2.22 (0.45) 1257 (3.31) 100
3 2 2 Swbility [4] [2] 0.07 (0.01) 0.19 (0.02) 047 (0.04) 100
4 22 Swbility [5] [2] 0.09 (0.01) 026 (0.02)  0.54 (0.03) 100
5 2 0 ROA [51 [osoft ] 0.21 (0.12) 14.09 (12.59)  25.32 (22.13) 40
6 3 3 ROA 81 [2] 1.24 (0.02) 39.08 (0.03)  287.89 (0.04) 100
7 20 Safety  [15] (o] 0.44 (0.35) 336 290)  7.61 (7.11) 100
9 8§ 0 Safety  [10] [1] 12,63 (7.71)  51.97 (32.75)  70.59 (44.66) 70
03 I Safety  [15] [ot] 1.57 (0.19) 11.87 (2.50)  51.08 (7.52) 90
113 0 SWA [61, [51 [2], [0 0.19 (0.05) 246 (0.100)  12.10 (0.20) 90
12 2 0 SWA [51, [5. 51 [p2]. [Osig 2] 0.13 (0.06) 027 (0.14) 039 (0.20) 100
13 2 1 SWA 81, [5] [2l, [p2] 0.06 (0.03) 020 (0.10)  0.58 (0.24) 90
4 3 1 SWA (101, [8] [p2], [o¢] 4.06 (0.87) 19.81 (2.73)  103.49 (7.23) 90
15 2 0 RWA [4] [2] 0.14 (0.09) 181 (175) 470 (4.63) 100
16 3 0 RWA [16] [2] 136 (0.09) 14.10 (0.14)  72.97 (0.20) 90
17 2 1 RWA [4, 4] [0sigsp2] 0.59 (0.27) 6.82 (3. 20.07 (11.46) 100
18 3 1 RWA [5] [2] 0.46 (0.11) 16.06 (53.81)  72.47 (44.64) 80
19 2 2 RWA [5] [0sig] 0.69 (0.40) 138 (0.94) 2.14 (1.90) 100
20 2 0 RSWA [4] [2] 0.19 (0.03) 1.29 (1.04) 379 (3.37) 100
21 3 0 RSWA  [l6] [2] 4.81 (0.13) 2714 (0.19)  80.95 (0.25) 100
22 2 0 RSWA  [5.5] [osigsp2] 1.52 (0.06) 4.45 (0.19) 10.97 (0.35) 100
23 2 1 RSWA  [8] [2] 0.21 (0.05) 0.67 (0.25) 1.19 (0.91) 100
24 2 2 RSWA  [5.5] [osig.p2] 0.98 (0.16) 1.23 (0.28) 1.61 (0.46) 100
25 2 0 RAR (61, [6] [osoft ], [2] 6.65 (1.08) 2474 (6.46)  77.80 (15.06) 100
26 2 2 RAR [6, 6], [6, 6]  [Tsig.p2], [Tsigp2]  5.13 (1.34) 26.99 (9.90) 101.23 (60.14) 100




Synthesis of control certificates for complex tasks

@ dynamical models with inputs (a.k.a., external non-determinism)
xt = f(x,u)

— synthesis of “control certificates”

Phase Plane

ROA for NL model, B
non-poly Lyapunov, 2 = RAR  certificate  for

2 disjoint initial sets RWA: reach-while-avoid closed-loop NL model

dashed lines: level sets; dark blue: Z; light blue: S; green: G; - F

cav.web.ox.ac.uk



Software for Neural Synthesis - Fossil 2.0

Synthesis Engine

Fossil 2.0
Problem

Learner J

A

Enhanced

'} Communicatiof

LY ! Valid Controller
Verifier (SMT Solvers) ' A and Certificate
dReal |

]

github.com/oxford-oxcav/fossil
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Ranking certificates as supermartingales

@ almost-sure (w.p. 1) countable-state program termination
@ can be extended to

e continuous state spaces
e control synthesis

e quantitative termination (e.g., via supermartingale inequalities)

av.web.ox.ac.uk
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Ranking certificates as supermartingales

@ almost-sure (w.p. 1) countable-state program termination
@ can be extended to

e continuous state spaces
e control synthesis

e quantitative termination (e.g., via supermartingale inequalities)

...and to whole-LTL quantitative model checking and design of gMDP

A. Abate, oxcav.web.ox.ac.uk

Neural Proofs



Proof rule for almost-sure Streett acceptance

e consider Markov chain x™ = f(x,w), along with Streett pair:

GF(A) = GF(B) A, B C State

Streett Supermartingale Proof Rule [AA et al, CAV24]

3 function V : State — IR>,

@ In B: allow V to increase in expectation by M (positive const)
@ In A~ B: decrease V in expectation by € (positive const)
@ Otherwise: ensure V does not increase in expectation

V is non-negative and almost a supermartingale

allow increase in B

A. Abate, oxcav.web.ox.ac.uk



Proof rule for almost-sure Streett acceptance

GF(A) = GF(B)?

O-B-O-@-O-O-O0 o e

0-inc e-dec 0-inc M-inc 0-inc 0-inc 0-inc 0-inc

O-DOE-O-OOE o/ e,

0-inc e-dec 0-inc M-inc 0-inc 0-inc 0-inc M-inc

OO OO X e

0-inc e-dec 0-inc M-inc O-inc e-dec 0O-inc 0O-inc

O EHOAOHD @)/ e

0-inc e-dec 0-inc M-inc 0-inc e-dec 0O-inc M-inc

A. Abate, oxcav.web.ox.ac.uk



Experiments

@ | - invariance generation

@ V - verification (certificate synthesis)

@ C - control synthesis

OXFORD

Benchmark w-Regular Specification Output | Time [s]
EvenOrNegative GF(x even) V FG(x < 0) Vv 0.09
SafeRWalkl G(x < 100) VIC 1.09
PersistRW FG(x < 10) VI 1.16
RecurRW GF(x > 100) Vi 1.49
SafeRWalk2 G(x > 10) VIC 1.09
GuaranteeRW G(x > —10) — F(x > 10%) Vi 5.61
Temperaturel FG(—Hot A =Cold) VIC 4.11
Temperature?2 GF(x < 30) A G(x < 60) Vi 28.93
Temperature3 G(Safe) A [GF(Cold) — GF(Hot)] | VIC 28.58
Temperature4 G(Safe) A [GF(Cold) — GF(Hot)] | VC 4.64
FinMemoryControl GF(x <0) — GF(x > 100) VIC 16.73

A. Abate, oxcav.web.ox.ac.uk
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Outline

© Synthesis of Formal Abstractions
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Formal abstractions

complex
model

specification

A. Abate, oxcav.web.ox.ac.uk
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Formal abstractions

¢-quantitative
abstraction

complex

specification
model P
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Formal abstractions

abstract .

&-model specification
¢-quantitative
abstraction

complex .

modZI specification
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Formal abstractions

abstract ¢-specification
model P
¢-quantitative
abstraction
complex .
P specification
model
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Formal abstractions

abstract automated
model ¢-specification verification
¢-quantitative
abstraction
complex —
P specification
model
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Formal abstractions

SAT,
model
checking
abstract automated
model ¢-specification verification
¢-quantitative
abstraction
complex —
P specification
model

A. Abate, oxcav.web.ox.ac.uk Neural Proofs



Formal abstractions

SAT,
model
checking
automated
. - hol
r -specification verification .
abstract f N ¢-spec holds,
model policy pz = C-spec
¢-quantitative
abstraction
complex .
f
model specitication
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Formal abstractions

SAT,
model
checking
automated
P - hol
abstract ¢-specification verification G Spec ho ds,
model policy pz = C-spec
¢-quantitative refine back
abstraction
complex .
f
model specitication
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Formal abstractions

SAT,
model
checking
automated
P - hol
abstract ¢-specification verification 6 Spec no ds,
model policy pz = C-spec
¢-quantitative refine back
abstraction
complex specification spec holds,
model policy p |= spec

A. Abate, oxcav.web.ox.ac.uk Neural Proofs



Formal abstractions

SAT,
model
checking
automated
. - hol
abstract ¢-specification verification G Spec ho ds,
model policy pz = C-spec
¢-quantitative refine back
abstraction
complex spec holds,

P .
model specification if not, policy p |= spec

tune ¢

A. Abate, oxcav.web.ox.ac.uk Neural Proofs
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Thank you for your attention
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Selected Journal References on Model- and Sample-Based Formal Abstractions (Not discussed in this talk)
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Almost-sure proof rules

so far we have seen that:

@ ranking supermartingales for almost-sure reachability
(Chakarov/Sankaranarayanan, CAV’13)

@ almost sure persistence & recurrence
(Chakarov/Voronin/Sankaranarayanan, TACAS’16)

@ Streett supermartingales for almost-sure reactivity conditions
(AA et. al.,, CAV'24)

and indeed many other similar proof rules ...
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@ restrict state space to supporting invariant I C State, so that:

’lP( Specification | G 1) = 1‘
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Almost-sure proof rules

so far we have seen that:

@ ranking supermartingales for almost-sure reachability
(Chakarov/Sankaranarayanan, CAV’13)

@ almost sure persistence & recurrence
(Chakarov/Voronin/Sankaranarayanan, TACAS’16)

@ Streett supermartingales for almost-sure reactivity conditions
(AA et. al.,, CAV'24)
and indeed many other similar proof rules ...

@ restrict state space to supporting invariant I C State, so that:
’lP( Specification | G 1) = 1‘

@ now, we can generalise any almost-sure proof rule to quantitative
supermartingale certificates:

’]P( Specification ) > p‘

@ this is done via a “decomposition”
(AA et. al., CAV'25)
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Decomposing Quantitative Probabilistic Verification

@ soundness of decomposition - suppose:
Q@ IP( Specification |G I ) =1
@P(GI)>p

o then IP( Specification ) > p
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Decomposing Quantitative Probabilistic Verification

@ soundness of decomposition - suppose:
Q@ IP( Specification |G I ) =1
QP(GI)>p

o then IP( Specification ) > p

@ special case:

@ if P( Streett acceptance | G 1) =1
(e.g., via Streett supermartingale & supporting invariant, [AA et. al., CAV'24])
Q@ifP(GI)>p
(e.g., via stochastic invariant (supermartingale) [Kushner, 1965] or repulsing
supermartingales [Chatterjee et.al., POPL'17][Takisaka et.a., ATVA'18])

@ then IP( Streett acceptance ) > p
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Completeness of Decomposition

@ question: does there always exist a region I C State such that:
© P( Specification | GI1)=1,
@ P( G I)=1D( Specification )

5A language is invariant under addition/deletion of any finite prefix to an infinite trajectory
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Completeness of Decomposition

@ question: does there always exist a region I C State such that:
© P( Specification | GI1)=1,
@ P( G I)=1D( Specification )
e poositive answer: suppose L is a shift-invariant specification®,
then the following holds:

Theorem (e-completeness for gMC)

For every € > 0, there exists a region I such that
Q@P(LIGI)=1
QP(GI)>P(L)—¢

Theorem (Completeness for finite MC)

There exists a region I such that
QP(LIGI)=1
QP(GI)=P(L)

5A language is invariant under addition/deletion of any finite prefix to an infinite trajectory
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