Neural Proofs

for Sound Verification and Control of Complex Systems

Alessandro Abate
with D. Roy, A. Edwards, A. Peruffo, D. Ahmed, L. Rickard, M. Giacobbe

OXCAV - Department of Computer Science - University of Oxford

CDC - 9 Dec 2025

[references at end of deck]

A. Abate, oxcav.web.ox.ac.uk

Outline

© Context

@ Neural Proofs - Formal Synthesis of Neural Certificates

© Synthesis of Formal Abstractions

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

Outline

© Context

Control vs formal verification
@ software programs

@ dynamical models for control

x€eR", G CcR",ie{1,23} PR
Vx € gi’ x+ = fi(x) x = rand(t,..., 10);
c=1;

while (x > 0) {

r = Bernoulli(0.5);
91 if (c==18& 1) {x=2xx }
else if (c == 1 && !r) { c++; }
\ \l else { x =x - 1; }
G (%)
N
o safety, @ invariance,
reachability, termination,
stability assertion check/violation
@ invariants & barrier certificates, @ program and loop invariants,
reach-set computation, reach over CFG, abstract int,
Lyapunov functions ranking functions and progress
measures

v.web.ox.ac.uk Neural Proofs

Models

@ dynamical/transition systems and reactive programs

xe€S$,0€®ace A
xt = f(x,0,a)

@ X - states/variables (possibly hybrid)
@ 0 - uncertainty (lack of determinism)
@ a/u - action, input, decisions
e non-environmental: adversarial (demonic) vs agential (angelic)
o general-space MDPs! 2 3 or SHS*

lBertsekas & Shreve, “Stochastic optimal control: The discrete-time case,” Athena Scientific, 1996
2Herna’m:Iez-Lerrna & Lasserre, “Discrete-time Markov control processes,” Springer, 1996

3Meyn & Tweedie, “Markov chains and stochastic stability,” Springer, 1993

4

A. Lavaei et.al., "Automated Verification and Synthesis of Stochastic Hybrid Systems: A Survey,” Automatica, v 146, 2022

v.web.ox.ac.uk

Cyber-Physical Systems: from code to control

@ complex embedded systems

@ interleaving of
cyber/digital components with
physical/analogue dynamics

@ dynamics, computation, and control

@ safety-critical applications

sound and automated verification

AN

correct-by-design control synthesis

av.web.ox.ac.uk Neural Proofs

Properties: Encoding rich dynamical behaviour

@ as specifications, requirements for verification (e.g., safety)
@ as tasks, objectives for control design (e.g., reachability)
@ without manual reward engineering - “rewards are NOT enough”

useful also in model-free (e.g., RL) sequential decision making

A. Abate, oxcav.web.ox.ac.uk

Properties: Encoding rich dynamical behaviour

xeR"
G CRYie{l,...m}
VxeG, xt=fix)

e
&
%

A. Abate, oxcav.web.ox.ac.uk

Properties: Encoding rich dynamical behaviour

x € R"

xt = f(x)

A. Abate, oxcav.web.ox.ac.uk

Properties: Encoding rich dynamical behaviour

x € R"
G CR"ie{l,.. .m)
+
X" = f(x)
G
G 9
xt = f(x) xt = f(x)

Xg — X1 — Xy —
Gxy — Gx — Gx, =

@ model's behaviour (cf. Jan Willems) <+ formal language

A. Abate, oxcav.web.ox.ac.uk

Properties: Encoding rich dynamical behaviour

@ consider (class of) properties/requirements/specifications

VxgeZ, ITeN, Vke{0,1,...,T—1}, VYr>T:
xTeg/ 7 xTEF

A. Abate, oxcav.web.ox.ac.uk

Properties: Encoding rich dynamical behaviour

@ consider (class of) properties/requirements/specifications

Vxo € Z, IT € N, vk e {0,1,...,T—1}, VT >T:

xr €3, , xr € F
‘lﬁggwgg 2 QJ

a: Stability b: ROA c¢: Safety d: SWA e: Reachability f: RWA g: RSWA : RAR

@ class encompasses stability, invariance, safety, reachability, reach-avoid, ...

(cf. safe/co-safe fragment in linear temporal logic)

A. Abate, oxcav.web.ox.ac.uk

Properties: Encoding rich dynamical behaviour

@ consider (class of) properties/requirements/specifications

Vxo€Z, AT €N, vke {0,1,..., T -1}, VT>T:
XTGQ, 7 XTGI

RIECT G d &

a: Stability b: ROA ¢ Safety d: SWA e: Reachability f: RWA g: RSWA h: RAR

@ connections to:

e temporal logics
e formal languages
e automata theory

@ beyond obligation, to full reactivity (co-horizon specs)

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

Properties: Encoding rich dynamical behaviour

Ooc. AOOG, AO-U

AU

A =Gy AU

A- ﬁl/f

“Ga A

Gy AU

xcav.web.ox.ac.uk

Synthesis for verification and design

from verification/analysis

to model design, or synthesis of controller (scheduler, policy, strategy)

A. Abate, oxcav.web.ox.ac.uk

Synthesis for verification and design

from verification/analysis

to model design, or synthesis of controller (scheduler, policy, strategy)

this line of research:
consider broad model class (co-state g-MDP's)
propose two general, automated, and formal approaches:

A. Abate, oxcav.web.ox.ac.uk

Synthesis for verification and design

from verification/analysis

to model design, or synthesis of controller (scheduler, policy, strategy)

this line of research:
consider broad model class (co-state g-MDP's)
propose two general, automated, and formal approaches:

@ synthesis of certificates for verification, and of controllers+-certificates
@ synthesis of abstractions, for verification and design [ThB03, FrB02]

A. Abate, oxcav.web.ox.ac.uk

Synthesis for verification and design

from verification /analysis

to model design, or synthesis of controller (scheduler, policy, strategy)

this line of research:
consider broad model class (co-state g-MDP's)
propose two general, automated, and formal approaches:

Neural Proofs - Formal Synthesis of Neural Certificates

A. Abate, oxcav.web.ox.ac.uk

Outline

© Context

@ Neural Proofs - Formal Synthesis of Neural Certificates

© Synthesis of Formal Abstractions

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

Outline

@ Neural Proofs - Formal Synthesis of Neural Certificates

Neural Proofs

Decision problems: SAT and SMT

@ SAT is a decision problem (yes/no question)
@ problem: to find satisfying assignment of Boolean function

@ e.g., assume Boolean x;, check

dxq, %9, %3 : (Xl V ﬁ9(2) N (—'Xl VxpV X3) A —x1

A. Abate, oxcav.web.ox.ac.uk

Decision problems: SAT and SMT

@ SAT is a decision problem (yes/no question)
@ problem: to find satisfying assignment of Boolean function

@ e.g., assume Boolean x;, check

dxq, %9, %3 : (x1 V ﬁxz) A (ﬁxl VxpyV JC3) N =X

SMT is a decision problem for a logical formula within a theory

instance: theory of non-linear arithmetics over real closed fields

e.g., assume reals x; € R, check

dxq,x0: x12>20=3x1+2x+1>0

A. Abate, oxcav.web.ox.ac.uk

Decision problems: SAT and SMT

@ SAT is a decision problem (yes/no question)
@ problem: to find satisfying assignment of Boolean function

@ e.g., assume Boolean x;, check

dxq, %9, x3 : (x1 vV ﬂXz) VAN (—|X1 Vxa V Xg) N —xqp

SMT is a decision problem for a logical formula within a theory

consider harder problem (2nd-order logic): assume reals x; € IR,
seek function F: R x R — R, s.t.
HF(xl, xz),Vxl, X2 &
F(X],Xz) > x1 A F(xl,xz) > xo N\ (F(Xl,XZ) = X1 \/F(x1,x2) = Xz)

(spoiler: F(xq,xp) = max{xq,xp})

A. Abate, oxcav.web.ox.ac.uk

Neural proofs and certificates

neural proofs = 1) proof rules + 2) certificates synthesis

1) proof rules = spec-dependent algebraic conditions on model's dynamics
2) certificate synthesis

A. Abate, oxcav.web.ox.ac.uk

Neural proofs and certificates

neural proofs = 1) proof rules + 2) certificates synthesis

1) proof rules = spec-dependent algebraic conditions on model's dynamics
2) certificate synthesis, 2a) deductive vs 2b) inductive

2a) deductive, i.e. via logic, SMT
2b) inductive: neural networks + SMT

A. Abate, oxcav.web.ox.ac.uk

Lyapunov functions for stability
e consider x* = f(x), assume x, € R" is an equilibrium, f(x.) = x,
@ ensure (asymptotic) stability of x, € D C R” (assume D given)

@ by finding R-valued Lyapunov function V(x), satisfying

© lower bound:
V(xe) =0 (1)

@ positive definiteness:
V(x) >0, Vx e D\ {x¢} (2)

© negative decrease:

V(f(x))—V(x) < —e, Vx e D\ {x.} (e>0) (3)

A. Abate, oxcav.web.ox.ac.uk

Lyapunov functions for stability

e consider x™ = f(x), assume x, € R" is an equilibrium, f(x.) = x,
@ ensure (asymptotic) stability of x, € D C R" (assume D given)
@ by finding IR-valued Lyapunov function V(x), satisfying

@ lower bound:

V(xe) =0 (1)
@ positive definiteness:
V(x) >0, Vx € D\ {x.} (2)
© negative decrease:
V(f(x))—V(x) < —e, Vx € D\ {x.} (e>0) (3)

@ that is, solve following synthesis problem:
JV:D - R st VxeD, conditions (1) A(2)A(3) hold

o feed 2nd-order logical formula above to SMT solver

A. Abate, oxcav.web.ox.ac.uk

Barrier certificates for safety

e consider x* = f(x), along with sets Z (initial) and U (unsafe)
@ ensure there exists no trajectory starting in Z ever entering U

A. Abate, oxcav.web.ox.ac.uk

Barrier certificates for safety

N
OXFORD

20 !
Yoo 075 o0 25 000 o0z 0% o7 100

Barrier certificates for safety

e consider x* = f(x), along with sets Z (initial) and U (unsafe)
@ ensure there exists no trajectory starting in Z ever entering U
e by finding barrier function B(x), satisfying

@ negativity within initial set Z:

B(x) <0, VxeT
@ positivity within unsafe set U:

B(x) >0, Vxe U
@ set invariance property via negative decrease:

B(f(x)) —B(x) <0, Vx € (UUT)

@ again, feed a 2nd-order logical formula to SMT solver

oxcav.web.ox.ac.uk

Ranking functions for termination/halting/reachability

e consider probabilistic program x™ = f(x,w):

while (x > 0):
if prob(0.75) {
x-)

A. Abate, oxcav.web.ox.ac.uk

Ranking functions for termination/halting/reachability

e consider probabilistic program x™ = f(x,w): CKEORD

while (x > 0):
if prob(0.75) {
x-)

@ ensure that, for any x > 0, F(x < 0) holds almost surely (with probability 1)
@ by finding ranking function V(x), satisfying
Q@ V(0)=0
Q@x>0—-V(x)>0
Q@ x>0 E[V(f(x)] <V(x)—e
namely, if x > 0, V(x) decreases in expectation by e (positive constant)

A. Abate, oxcav.web.ox.ac.uk

Ranking functions for termination/halting/reachability

e consider probabilistic program x™ = f(x,w): CKEORD

while (x > 0):
if prob(0.75) {
x-)

@ ensure that, for any x > 0, F(x < 0) holds almost surely (with probability 1)
@ by finding ranking function V(x), satisfying
Q@ V(0)=0
Q@x>0—-V(x)>0
Q@ x>0 E[V(f(x)] <V(x)—e
namely, if x > 0, V(x) decreases in expectation by e (positive constant)

(O —O—O—0—@-

e-dec e-dec e-dec e-dec Halt

e.g., V(x) = x > 0 & decreases in expectation by say € = 3/4

A. Abate, oxcav.web.ox.ac.uk

Counterexample-guided Inductive Synthesis (CEGIS)
f(x),D 1. Learner

generates candidates V' over
v finite set S
T valid 2. Verifier
L Verifi '—' 1% e .
carner e certifies validity on D, or
_/ .
c provides counterexample(s) ¢

@ inductive synthesis loop

1. sample (finite) set S C D

2. Learner generates V(6,-) via query SMT solver on formula:
30 € © : proof rule holds on points s € S

3. Verifier checks either V(-,x) valid over dense D, or counterexample ¢ :
query SMT solver on formula dc € D : proof rule does not hold on ¢

4. S+ SUc, loop back to 2

@ sound, but not complete: infinite search space (0 € ®) and domain (x € D)

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

Neural Inductive Synthesis

f(x),D 1. Learner
| .
generates candidates V' over
v finite set S
T valid 2. Verifier
L Verifi '—» 1% e .
carner e certifies validity on D, or
_/ .
c provides counterexample(s) ¢

@ inductive synthesis loop

1. sample (finite) set S C D

2. Learner

3. Verifier checks either V(-,x) valid over dense D, or counterexample ¢ :
query SMT solver on formula dc € D : proof rule does not hold on ¢

4. S+ SUc, loop back to 2

@ sound, but not complete: infinite search space (0 € ®) and domain (x € D)

Neural Proofs

A. Abate, oxcav.web.ox.ac.uk

Neural networks as Lyapunov functions

@ neural nets are general and flexible @
(universal function approximators)
@ Learner trains shallow neural network ‘
V(x) = W2-0’1(W1X+b1) . @ .
w; W,

(W; weights, (07) activation fcns)

@ loss function enforces Lyapunov conditions in (1)+(2) and (3) on points in S:

L(S)=|V(0) |+ Z max{0,—V(s)} + Z max{0, V(f(s)) —V(s) +€}

seS seS

@ loss function L is “pretty good” proxy of synthesis formula

A. Abate, oxcav.web.ox.ac.uk

Neural networks as Lyapunov functions

f(x),D
I
\4
=
valid
Learner @ \
_/

c

@ surprisingly effectivel Communication Learner <> Verifier is crucial

@ loss function enforces Lyapunov conditions in (1)+(2) and (3) on points in S:

L(S)=|V(0) |+ Z max{0,—V(s)} + Z max{0, V(f(s)) = V(s) +€}

seS seS

@ loss function L is “pretty good” proxy of synthesis formula

A. Abate, oxcav.web.ox.ac.uk

Synthesis of Lyapunov functions - example

10

15 ————112000000 non
Er 0w) 0 s 0 % 1 Er 0o m

X Cc-ex X C-ex NO c-ex

Synthesis of barrier certificates - examples

Barrier Certificate

—-- Unsafe Set Barrier Border
1 Initial Set 20— x N

~-- Unsafe Set

[10] - Linear

Neural Proofs

Synthesis of barrier certificates - examples

Barrier Certificate

—— Initial Set
— = Unsafe Set

>~ 0.00

-025
-0.50 1

-0.75 '

~1.0

Barrier Border

= < >

nitial set |
Unsafe Set

0
-1.00 -0.75 -050 -025 000 025

x

050 075 100

[20] - Softplus

Synthesis of barrier certificates - examples

Barrier Certificate

1 Initial Set Barrier Border
1 Unsafe Set 20T <

[20,20] - Sigmoid, Sigmoid

v.web.ox.ac.uk Neural Proofs

Synthesis of control certificates for complex tasks

@ dynamical models with inputs (a.k.a., external non-determinism)

xt = f(x,u)

— synthesis of “control certificates”

@ modify known synthesis problem:

JV:D—-R st VxeD conditions (1) A (2) A (3) hold

A. Abate, oxcav.web.ox.ac.uk

Synthesis of control certificates for complex tasks

@ dynamical models with inputs (a.k.a., external non-determinism)

xt = f(x,u)

— synthesis of “control certificates”
@ approach:

@ control policies are also NN-templated
@ concurrent synthesis controls and corresponding certificates

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

Synthesis of control certificates for complex tasks
e dynamical models with inputs (a.k.a., external non-determinism)

xt = f(x,u)

— synthesis of “control certificates”

o (back to) broad class of properties/requirements

Vxo € Z, dT €N, vte{0,...,T—1}, vVt >T:

xr € G, X €U, xr € F
7 0 - N
R = (- v

a: Stability b: ROA ¢ Safety d: SWA e: Reachability f: RWA g RSWA h: RAR

A. Abate, oxcav.web.ox.ac.uk

Synthesis of control certificates for complex tasks
e dynamical models with inputs (a.k.a., external non-determinism)

xt = f(x,u)

— synthesis of “control certificates”

Ns Nu Property Neurons Activations T (s) Success (%)

min P max S

1 2 0 Stability [6] [2] 0.01 (= 0.00) 0.16 (0.15) 1.50 (1.48) 100
2 30 Stability [8] [2] 0.28 (= 0.00) 2.22 (0.45) 1257 (3.31) 100
3 2 2 Swbility [4] [2] 0.07 (0.01) 0.19 (0.02) 047 (0.04) 100
4 22 Swbility [5] [2] 0.09 (0.01) 026 (0.02) 0.54 (0.03) 100
5 2 0 ROA [51 [osoft] 0.21 (0.12) 14.09 (12.59) 25.32 (22.13) 40
6 3 3 ROA 81 [2] 1.24 (0.02) 39.08 (0.03) 287.89 (0.04) 100
7 20 Safety [15] (o] 0.44 (0.35) 336 290) 7.61 (7.11) 100
9 8§ 0 Safety [10] [1] 12,63 (7.71) 51.97 (32.75) 70.59 (44.66) 70
03 I Safety [15] [ot] 1.57 (0.19) 11.87 (2.50) 51.08 (7.52) 90
113 0 SWA [61, [51 [2], [0 0.19 (0.05) 246 (0.100) 12.10 (0.20) 90
12 2 0 SWA [51, [5. 51 [p2]. [Osig 2] 0.13 (0.06) 027 (0.14) 039 (0.20) 100
13 2 1 SWA 81, [5] [2l, [p2] 0.06 (0.03) 020 (0.10) 0.58 (0.24) 90
4 3 1 SWA (101, [8] [p2], [o¢] 4.06 (0.87) 19.81 (2.73) 103.49 (7.23) 90
15 2 0 RWA [4] [2] 0.14 (0.09) 181 (175) 470 (4.63) 100
16 3 0 RWA [16] [2] 136 (0.09) 14.10 (0.14) 72.97 (0.20) 90
17 2 1 RWA [4, 4] [0sigsp2] 0.59 (0.27) 6.82 (3. 20.07 (11.46) 100
18 3 1 RWA [5] [2] 0.46 (0.11) 16.06 (53.81) 72.47 (44.64) 80
19 2 2 RWA [5] [0sig] 0.69 (0.40) 138 (0.94) 2.14 (1.90) 100
20 2 0 RSWA [4] [2] 0.19 (0.03) 1.29 (1.04) 379 (3.37) 100
21 3 0 RSWA [l6] [2] 4.81 (0.13) 2714 (0.19) 80.95 (0.25) 100
22 2 0 RSWA [5.5] [osigsp2] 1.52 (0.06) 4.45 (0.19) 10.97 (0.35) 100
23 2 1 RSWA [8] [2] 0.21 (0.05) 0.67 (0.25) 1.19 (0.91) 100
24 2 2 RSWA [5.5] [osig.p2] 0.98 (0.16) 1.23 (0.28) 1.61 (0.46) 100
25 2 0 RAR (61, [6] [osoft], [2] 6.65 (1.08) 2474 (6.46) 77.80 (15.06) 100
26 2 2 RAR [6, 6], [6, 6] [Tsig.p2], [Tsigp2] 5.13 (1.34) 26.99 (9.90) 101.23 (60.14) 100

Synthesis of control certificates for complex tasks

@ dynamical models with inputs (a.k.a., external non-determinism)
xt = f(x,u)

— synthesis of “control certificates”

Phase Plane

ROA for NL model, B
non-poly Lyapunov, 2 = RAR certificate for

2 disjoint initial sets RWA: reach-while-avoid closed-loop NL model

dashed lines: level sets; dark blue: Z; light blue: S; green: G; - F

cav.web.ox.ac.uk

Software for Neural Synthesis - Fossil 2.0

Synthesis Engine

Fossil 2.0
Problem

Learner J

A

Enhanced

'} Communicatiof

LY ! Valid Controller
Verifier (SMT Solvers) ' A and Certificate
dReal |

]

github.com/oxford-oxcav/fossil

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

Ranking certificates as supermartingales

@ almost-sure (w.p. 1) countable-state program termination
@ can be extended to

e continuous state spaces
e control synthesis

e quantitative termination (e.g., via supermartingale inequalities)

av.web.ox.ac.uk

Neural Proofs

Ranking certificates as supermartingales

@ almost-sure (w.p. 1) countable-state program termination
@ can be extended to

e continuous state spaces
e control synthesis

e quantitative termination (e.g., via supermartingale inequalities)

...and to whole-LTL quantitative model checking and design of gMDP

A. Abate, oxcav.web.ox.ac.uk

Neural Proofs

Proof rule for almost-sure Streett acceptance

e consider Markov chain x™ = f(x,w), along with Streett pair:

GF(A) = GF(B) A, B C State

Streett Supermartingale Proof Rule [AA et al, CAV24]

3 function V : State — IR>,

@ In B: allow V to increase in expectation by M (positive const)
@ In A~ B: decrease V in expectation by € (positive const)
@ Otherwise: ensure V does not increase in expectation

V is non-negative and almost a supermartingale

allow increase in B

A. Abate, oxcav.web.ox.ac.uk

Proof rule for almost-sure Streett acceptance

GF(A) = GF(B)?

O-B-O-@-O-O-O0 o e

0-inc e-dec 0-inc M-inc 0-inc 0-inc 0-inc 0-inc

O-DOE-O-OOE o/ e,

0-inc e-dec 0-inc M-inc 0-inc 0-inc 0-inc M-inc

OO OO X e

0-inc e-dec 0-inc M-inc O-inc e-dec 0O-inc 0O-inc

O EHOAOHD @)/ e

0-inc e-dec 0-inc M-inc 0-inc e-dec 0O-inc M-inc

A. Abate, oxcav.web.ox.ac.uk

Experiments

@ | - invariance generation

@ V - verification (certificate synthesis)

@ C - control synthesis

OXFORD

Benchmark w-Regular Specification Output | Time [s]
EvenOrNegative GF(x even) V FG(x < 0) Vv 0.09
SafeRWalkl G(x < 100) VIC 1.09
PersistRW FG(x < 10) VI 1.16
RecurRW GF(x > 100) Vi 1.49
SafeRWalk2 G(x > 10) VIC 1.09
GuaranteeRW G(x > —10) — F(x > 10%) Vi 5.61
Temperaturel FG(—Hot A =Cold) VIC 4.11
Temperature?2 GF(x < 30) A G(x < 60) Vi 28.93
Temperature3 G(Safe) A [GF(Cold) — GF(Hot)] | VIC 28.58
Temperature4 G(Safe) A [GF(Cold) — GF(Hot)] | VC 4.64
FinMemoryControl GF(x <0) — GF(x > 100) VIC 16.73

A. Abate, oxcav.web.ox.ac.uk

Outline

© Context

@ Neural Proofs - Formal Synthesis of Neural Certificates

© Synthesis of Formal Abstractions

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

Outline

© Synthesis of Formal Abstractions

v.web.ox.ac.uk Neural Proofs

Formal abstractions

complex
model

specification

A. Abate, oxcav.web.ox.ac.uk

Neural Proofs

Formal abstractions

¢-quantitative
abstraction

complex

specification
model P

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

Formal abstractions

abstract .

&-model specification
¢-quantitative
abstraction

complex .

modZI specification

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

Formal abstractions

abstract ¢-specification
model P
¢-quantitative
abstraction
complex .
P specification
model

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

Formal abstractions

abstract automated
model ¢-specification verification
¢-quantitative
abstraction
complex —
P specification
model

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

Formal abstractions

SAT,
model
checking
abstract automated
model ¢-specification verification
¢-quantitative
abstraction
complex —
P specification
model

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

Formal abstractions

SAT,
model
checking
automated
. - hol
r -specification verification .
abstract f N ¢-spec holds,
model policy pz = C-spec
¢-quantitative
abstraction
complex .
f
model specitication

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

Formal abstractions

SAT,
model
checking
automated
P - hol
abstract ¢-specification verification G Spec ho ds,
model policy pz = C-spec
¢-quantitative refine back
abstraction
complex .
f
model specitication

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

Formal abstractions

SAT,
model
checking
automated
P - hol
abstract ¢-specification verification 6 Spec no ds,
model policy pz = C-spec
¢-quantitative refine back
abstraction
complex specification spec holds,
model policy p |= spec

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

Formal abstractions

SAT,
model
checking
automated
. - hol
abstract ¢-specification verification G Spec ho ds,
model policy pz = C-spec
¢-quantitative refine back
abstraction
complex spec holds,

P .
model specification if not, policy p |= spec

tune ¢

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

© Context

© Neural Proofs - Formal Synthesis of Neural Certificates

© Synthesis of Formal Abstractions

Neural Proofs

Thank you for your attention

oxcav.web.ox.ac.uk

All images used are under Wikimedia CCAS license, or by author

Neural Proofs

Selected References on Inductive (SMT and Neural) Synthesis (of Certificates/Controllers/Models)
L. Rickard, A. Abate, K. Margellos, “Data-Driven Neural Certificate Synthesis,” arXiv:2502.05510, 2025.

A. Edwards, A. Peruffo and A. Abate, “Fossil 2.0: Design, Usage and Impact of a Software Tool for Verification and Control of Dyna
Models,” Science of Computer Programming, v. 247, Jan 2026.

A. Abate, M. Giacobbe, and D. Roy, “Quantitative Supermartingale Certificates,” CAV25, LNCS 15934, pp. 3-28, 2025.

A. Edwards, A. Peruffo and A. Abate, “A General Verification Framework for Dynamical and Control Models via Certificate Synthesis,”
arXiv:2309.06090, 2024.

A. Abate, M. Giacobbe, and D. Roy, “Stochastic Omega-Regular Verification and Control with Supermartingales,” CAV24, LNCS 14683, pp.
395-419, 2024.

A. Edwards, A. Peruffo and A. Abate, “Fossil 2.0: Formal Certificate Synthesis for the Verification and Control of Dynamical Models,” HSCC24,
In Press, 2024.

A. Abate, A. Edwards, M. Giacobbe, H. Punchihewa, and D. Roy, “Quantitative Neural Verification of Probabilistic Programs,” CONCUR23,
arXiv:2301.06136, 2023.

D. Roy, M. Giacobbe, and A. Abate, “Learning Probabilistic Termination Proofs,” CAV21, LNCS 12760, pp. 3-26, 2021.

A. Abate, D. Ahmed, A. Edwards, M. Giacobbe and A. Peruffo, “FOSSIL: A Software Tool for the Formal Synthesis of Lyapunov Functions and
Barrier Certificates using Neural Networks,” HSCC21, pp. 1-11, 2021.

A. Abate, D. Ahmed and A. Peruffo, “Automated Formal Synthesis of Neural Barrier Certificates for Dynamical Models,” TACAS21, LNCS
12651, pp. 370-388, 2021.

D. Ahmed, A. Peruffo and A. Abate, “Automated and Sound Synthesis of Lyapunov Functions with SMT Solvers,” TACAS20, LNCS 12078, pp.
97-114, 2020.

A. Abate, D. Ahmed, M. Giacobbe and A. Peruffo “Automated Formal Synthesis of Lyapunov Neural Networks,” IEEE Control Systems Letters, 5
(3), 773-778, 2020.

A. Edwards, M. Giacobbe, and A. Abate, “On the Trade-off Between Efficiency and Precision of Neural Abstraction,” QEST23, LNCS 14287, pp.
152-171, 2023.

A. Abate, A. Edwards, and M. Giacobbe, “Neural Abstractions,” NeurlPS22, Advances in Neural Information Processing Systems 35,
26432-26447, 2022.

A. Abate, H. Barbosa, C. Barrett. C. David, P. Kesseli, D. Kroening, E. Polgreen, A. Reynolds, C. Tinelli, “Synthesising programs with non-trivial
constants,” Journal of Automated Reasoning (JAR), 67(2):19, 2023.

A. Abate, |. Bessa, D. Cattaruzza, L. Cordeiro, C. David, P. Kesseli, D. Kroening and E. Polgreen, “Automated Formal Synthesis of Provably Safe
Digital Controllers for Continuous Plants,” Acta Informatica, 57(3), 2020.

Selected Journal References on Model- and Sample-Based Formal Abstractions (Not discussed in this talk)

T. Badings, L Romao, A. Abate, D. Parker, H. Poonawala, M. Stoelinga and N. Jansen, “Robust Control for Dynamical Systems with'
Non-Gaussian Noise via Formal Abstractions,” JAIR, vol 76, pp.341-391, 2023.

T.S. Badings, A. Abate, N. Jansen, D. Parker, H.A. Poonawala, and M. Stoelinga, “Sampling-Based Robust Control of Autonomous Systems with
Non-Gaussian Noise,” AAAI22, 36 (9), pp. 9669-9678, 2022.

A. Lavaei, S. Soudjani, A. Abate, and M. Zamani, “Automated Verification and Synthesis of Stochastic Hybrid Systems: A Survey,” Automatica,
vol. 146, Dec. 2022.

L. Laurenti, M. Lahijanian, A. Abate, L. Cardelli and M. Kwiatkowska, “Formal and Efficient Control Synthesis for Continuous-Time Stochastic
Processes,” |IEEE Transactions on Automatic Control, vol. 66, no. 1, pp. 17-32, Jan 2021.

S. Haesaert, S.E.Z. Soudjani, and A. Abate, “Verification of general Markov decision processes by approximate similarity relations and policy
refinement,” SIAM Journal on Control and Optimisation, vol. 55, nr. 4, pp. 2333-2367, 2017.

I. Tkachev, A. Mereacre, J.-P. Katoen, and A. Abate, "Quantitative Model Checking of Controlled Discrete-Time Markov Processes,” Information
and Computation, vol. 253, nr. 1, pp. 1-35, 2017.

S. Haesaert, N. Cauchi and A. Abate, “Certified policy synthesis for general Markov decision processes: An application in building automation
systems,” Performance Evaluation, vol. 117, pp. 75-103, 2017.

S.E.Z. Soudjani and A. Abate, “Aggregation and Control of Populations of Thermostatically Controlled Loads by Formal Abstractions,” IEEE
Transactions on Control Systems Technology. vol. 23, nr. 3, pp. 975-990, 2015.

S.E.Z. Soudjani and A. Abate, "Quantitative Approximation of the Probability Distribution of a Markov Process by Formal Abstractions,” Logical
Methods in Computer Science, Vol. 11, nr. 3, Oct. 2015.

M. Zamani, P. Mohajerin Esfahani, R. Majumdar, A. Abate, and J. Lygeros, “Symbolic control of stochastic systems via approximately bisimilar
finite abstractions,” IEEE Transactions on Automatic Control, vol. 59 nr. 12, pp. 3135-3150, Dec. 2014.

I. Tkachev and A. Abate, “Characterization and computation of infinite horizon specifications over Markov processes,” Theoretical Computer
Science, vol. 515, pp. 1-18, 2014.

S. Soudjani and A. Abate, “Adaptive and Sequential Gridding for Abstraction and Verification of Stochastic Processes,” SIAM Journal on Applied
Dynamical Systems, vol. 12, nr. 2, pp. 921-956, 2013.

A. Abate, J.P Katoen, J. Lygeros and M. Prandini, "Approximate Model Checking of Stochastic Hybrid Systems,” European Journal of Control,
16(6), 624-641, 2010.

A. Abate, M. Prandini, J. Lygeros and S. Sastry, “Probabilistic Reachability and Safety Analysis of Controlled Discrete-Time Stochastic Hybrid
Systems,” Automatica, 44(11), 2724-2734, Nov. 2008.

Almost-sure proof rules

so far we have seen that:

@ ranking supermartingales for almost-sure reachability
(Chakarov/Sankaranarayanan, CAV’13)

@ almost sure persistence & recurrence
(Chakarov/Voronin/Sankaranarayanan, TACAS’16)

@ Streett supermartingales for almost-sure reactivity conditions
(AA et. al.,, CAV'24)

and indeed many other similar proof rules ...

A. Abate, oxcav.web.ox.ac.uk

Almost-sure proof rules

so far we have seen that:

@ ranking supermartingales for almost-sure reachability
(Chakarov/Sankaranarayanan, CAV’13)

@ almost sure persistence & recurrence
(Chakarov/Voronin/Sankaranarayanan, TACAS’16)

@ Streett supermartingales for almost-sure reactivity conditions
(AA et. al.,, CAV'24)
and indeed many other similar proof rules ...

@ restrict state space to supporting invariant I C State, so that:

’lP(Specification | G 1) = 1‘

A. Abate, oxcav.web.ox.ac.uk

Almost-sure proof rules

so far we have seen that:

@ ranking supermartingales for almost-sure reachability
(Chakarov/Sankaranarayanan, CAV’13)

@ almost sure persistence & recurrence
(Chakarov/Voronin/Sankaranarayanan, TACAS’16)

@ Streett supermartingales for almost-sure reactivity conditions
(AA et. al.,, CAV'24)
and indeed many other similar proof rules ...

@ restrict state space to supporting invariant I C State, so that:
’lP(Specification | G 1) = 1‘

@ now, we can generalise any almost-sure proof rule to quantitative
supermartingale certificates:

’]P(Specification) > p‘

@ this is done via a “decomposition”
(AA et. al., CAV'25)

A. Abate, oxcav.web.ox.ac.uk

Decomposing Quantitative Probabilistic Verification

@ soundness of decomposition - suppose:
Q@ IP(Specification |G I) =1
@P(GI)>p

o then IP(Specification) > p

A. Abate, oxcav.web.ox.ac.uk

Decomposing Quantitative Probabilistic Verification

@ soundness of decomposition - suppose:
Q@ IP(Specification |G I) =1
QP(GI)>p

o then IP(Specification) > p

@ special case:

@ if P(Streett acceptance | G 1) =1
(e.g., via Streett supermartingale & supporting invariant, [AA et. al., CAV'24])
Q@ifP(GI)>p
(e.g., via stochastic invariant (supermartingale) [Kushner, 1965] or repulsing
supermartingales [Chatterjee et.al., POPL'17][Takisaka et.a., ATVA'18])

@ then IP(Streett acceptance) > p

A. Abate, oxcav.web.ox.ac.uk

Completeness of Decomposition

@ question: does there always exist a region I C State such that:
© P(Specification | GI1)=1,
@ P(G I)=1D(Specification)

5A language is invariant under addition/deletion of any finite prefix to an infinite trajectory

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

Completeness of Decomposition

@ question: does there always exist a region I C State such that:
© P(Specification | GI1)=1,
@ P(G I)=1D(Specification)
e poositive answer: suppose L is a shift-invariant specification®,
then the following holds:

Theorem (e-completeness for gMC)

For every € > 0, there exists a region I such that
Q@P(LIGI)=1
QP(GI)>P(L)—¢

Theorem (Completeness for finite MC)

There exists a region I such that
QP(LIGI)=1
QP(GI)=P(L)

5A language is invariant under addition/deletion of any finite prefix to an infinite trajectory

A. Abate, oxcav.web.ox.ac.uk Neural Proofs

	Context
	Neural Proofs - Formal Synthesis of Neural Certificates
	Synthesis of Formal Abstractions

