
[references at end of deck]

Neural Proofs
for Sound Verification and Control of Complex Systems

Alessandro Abate

with D. Roy, A. Edwards, A. Peruffo, D. Ahmed, L. Rickard, M. Giacobbe

OXCAV - Department of Computer Science - University of Oxford

CDC - 9 Dec 2025

OXFORD CONTROL AND VERIFICATION

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 1 /25

Outline

1 Context

2 Neural Proofs - Formal Synthesis of Neural Certificates

3 Synthesis of Formal Abstractions

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 2 /25

Outline

1 Context

2 Neural Proofs - Formal Synthesis of Neural Certificates

3 Synthesis of Formal Abstractions

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 2 /25

Control vs formal verification

dynamical models for control

x ∈ Rn,Gi ⊂ Rn, i ∈ {1, 2, 3}
∀x ∈ Gi, x+ = fi(x)

G1

G2
G3

x+ = f1(x)

x 2 G1

x+ = f3(x)

x 2 G3

x+ = f2(x)

x 2 G2

x 2 G1

x 2 G3

x 2 G2

x 2 G3

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 41 /43

G1

G2
G3

x+ = f1(x)

x 2 G1

x+ = f3(x)

x 2 G3

x+ = f2(x)

x 2 G2

x 2 G1

x 2 G3

x 2 G2

x 2 G3

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 41 /43

safety,
reachability,
stability

invariants & barrier certificates,
reach-set computation,
Lyapunov functions

software programs

int x, c, r;

...

x = rand(1,...,10);

c = 1;

while (x > 0) {
r = Bernoulli(0.5);

if (c == 1 && r) { x = 2 * x; }
else if (c == 1 && !r) { c++; }
else { x = x - 1; }
}

invariance,
termination,
assertion check/violation

program and loop invariants,
reach over CFG, abstract int,
ranking functions and progress
measures

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 3 /25

Models

dynamical/transition systems and reactive programs

x ∈ S, θ ∈ Θ, a ∈ A

x+ = f (x, θ, a)

x - states/variables (possibly hybrid)

θ - uncertainty (lack of determinism)

a/u - action, input, decisions

non-environmental: adversarial (demonic) vs agential (angelic)

general-space MDPs1 2 3, or SHS4

1
Bertsekas & Shreve, “Stochastic optimal control: The discrete-time case,” Athena Scientific, 1996

2
Hernández-Lerma & Lasserre, “Discrete-time Markov control processes,” Springer, 1996

3
Meyn & Tweedie, “Markov chains and stochastic stability,” Springer, 1993

4
A. Lavaei et.al., “Automated Verification and Synthesis of Stochastic Hybrid Systems: A Survey,” Automatica, v 146, 2022

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 4 /25

Cyber-Physical Systems: from code to control

complex embedded systems

interleaving of
cyber/digital components with
physical/analogue dynamics

dynamics, computation, and control

safety-critical applications

→ sound and automated verification

→ correct-by-design control synthesis

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 5 /25

Properties: Encoding rich dynamical behaviour

as specifications, requirements for verification (e.g., safety)

as tasks, objectives for control design (e.g., reachability)

without manual reward engineering - “rewards are NOT enough”

useful also in model-free (e.g., RL) sequential decision making

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 6 /25

Properties: Encoding rich dynamical behaviour

x ∈ Rn

Gi ⊂ Rn, i ∈ {1, . . . m}
∀x ∈ Gi, x+ = fi(x)

G1

G2
G3

x+ = f1(x)

x 2 G1

x+ = f3(x)

x 2 G3

x+ = f2(x)

x 2 G2

x 2 G1

x 2 G3

x 2 G2

x 2 G3

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 41 /43

G1

G2
G3

x+ = f1(x)

x 2 G1

x+ = f3(x)

x 2 G3

x+ = f2(x)

x 2 G2

x 2 G1

x 2 G3

x 2 G2

x 2 G3

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 41 /43

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 6 /25

Properties: Encoding rich dynamical behaviour

x ∈ Rn

Gi ⊂ Rn, i ∈ {1, . . . m}

x+ = f (x)

x+ = f (x)

G1

G2
G3

x+ = f (x)

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 42 /43

G1

G2
G3

x+ = f (x)

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 42 /43

x : x0 → x1 → x2 → . . .
ρ : Gx0 → Gx1 → Gx2 → . . .

model’s behaviour (cf. Jan Willems) ↔ formal language

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 6 /25

Properties: Encoding rich dynamical behaviour

x ∈ Rn

Gi ⊂ Rn, i ∈ {1, . . . m}
x+ = f (x)

x+ = f (x)

G1

G2
G3

x+ = f (x)

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 42 /43

G1

G2
G3

x+ = f (x)

A. Abate, oxcav.web.ox.ac.uk Sound Control Synthesis with Logic and Data 42 /43

x : x0 → x1 → x2 → . . .
ρ : Gx0 → Gx1 → Gx2 → . . .

model’s behaviour (cf. Jan Willems) ↔ formal language

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 6 /25

Properties: Encoding rich dynamical behaviour

consider (class of) properties/requirements/specifications

∀x0 ∈ I , ∃T ∈N, ∀k ∈ {0, 1, . . . , T − 1}, ∀τ ≥ T :
xT ∈ G, xk ̸∈ U , xτ ∈ F

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RARA. Abate, oxcav.web.ox.ac.uk Neural Proofs 6 /25

Properties: Encoding rich dynamical behaviour

consider (class of) properties/requirements/specifications

∀x0 ∈ I , ∃T ∈N, ∀k ∈ {0, 1, . . . , T − 1}, ∀τ ≥ T :
xT ∈ G, xk ̸∈ U , xτ ∈ F

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

class encompasses stability, invariance, safety, reachability, reach-avoid, . . .

(cf. safe/co-safe fragment in linear temporal logic)

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 6 /25

Properties: Encoding rich dynamical behaviour

consider (class of) properties/requirements/specifications

∀x0 ∈ I , ∃T ∈N, ∀k ∈ {0, 1, . . . , T − 1}, ∀τ ≥ T :
xT ∈ G, xk ̸∈ U , xτ ∈ F

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

connections to:

temporal logics
formal languages
automata theory

beyond obligation, to full reactivity (∞-horizon specs)

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 6 /25

Properties: Encoding rich dynamical behaviour

□♢G1 ∧□♢G2 ∧□¬U

q1start

q2

q3

¬G1 ∧ ¬U

G1 ∧ ¬G2 ∧ ¬U

G2 ∧ ¬U

G1 ∧ ¬G2 ∧ ¬U

¬G2 ∧ ¬U

¬G1 ∧ ¬U

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 6 /25

Synthesis for verification and design

from verification/analysis

to model design, or synthesis of controller (scheduler, policy, strategy)

this line of research:
consider broad model class (∞-state g-MDP’s)

propose two general, automated, and formal approaches:

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 7 /25

Synthesis for verification and design

from verification/analysis

to model design, or synthesis of controller (scheduler, policy, strategy)

this line of research:
consider broad model class (∞-state g-MDP’s)

propose two general, automated, and formal approaches:

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 7 /25

Synthesis for verification and design

from verification/analysis

to model design, or synthesis of controller (scheduler, policy, strategy)

this line of research:
consider broad model class (∞-state g-MDP’s)

propose two general, automated, and formal approaches:

1 synthesis of certificates for verification, and of controllers+certificates

2 synthesis of abstractions, for verification and design [ThB03, FrB02]

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 7 /25

Synthesis for verification and design

from verification/analysis

to model design, or synthesis of controller (scheduler, policy, strategy)

this line of research:
consider broad model class (∞-state g-MDP’s)

propose two general, automated, and formal approaches:

Neural Proofs - Formal Synthesis of Neural Certificates

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 7 /25

Outline

1 Context

2 Neural Proofs - Formal Synthesis of Neural Certificates

3 Synthesis of Formal Abstractions

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 8 /25

Outline

1 Context

2 Neural Proofs - Formal Synthesis of Neural Certificates

3 Synthesis of Formal Abstractions

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 8 /25

Decision problems: SAT and SMT

SAT is a decision problem (yes/no question)

problem: to find satisfying assignment of Boolean function

e.g., assume Boolean xi, check

∃x1, x2, x3 : (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ ¬x1

SMT is a decision problem for a logical formula within a theory

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 9 /25

Decision problems: SAT and SMT

SAT is a decision problem (yes/no question)

problem: to find satisfying assignment of Boolean function

e.g., assume Boolean xi, check

∃x1, x2, x3 : (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ ¬x1

SMT is a decision problem for a logical formula within a theory

instance: theory of non-linear arithmetics over real closed fields

e.g., assume reals xi ∈ R, check

∃x1, x2 : x1 ≥ 0⇒ 3x1 + 2x2 + 1 > 0

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 9 /25

Decision problems: SAT and SMT

SAT is a decision problem (yes/no question)

problem: to find satisfying assignment of Boolean function

e.g., assume Boolean xi, check

∃x1, x2, x3 : (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ ¬x1

SMT is a decision problem for a logical formula within a theory

consider harder problem (2nd-order logic): assume reals xi ∈ R,

seek function F : R×R→ R, s.t.

∃F(x1, x2), ∀x1, x2 :

F(x1, x2) ≥ x1 ∧ F(x1, x2) ≥ x2 ∧ (F(x1, x2) = x1 ∨ F(x1, x2) = x2)

(spoiler: F(x1, x2) = max{x1, x2})

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 9 /25

Neural proofs and certificates

neural proofs = 1) proof rules + 2) certificates synthesis

1) proof rules = spec-dependent algebraic conditions on model’s dynamics

2) certificate synthesis

, 2a) deductive vs 2b) inductive

2a) deductive, i.e. via logic, SMT
2b) inductive: neural networks + SMT

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 10 /25

Neural proofs and certificates

neural proofs = 1) proof rules + 2) certificates synthesis

1) proof rules = spec-dependent algebraic conditions on model’s dynamics

2) certificate synthesis, 2a) deductive vs 2b) inductive

2a) deductive, i.e. via logic, SMT
2b) inductive: neural networks + SMT

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 10 /25

Lyapunov functions for stability
consider x+ = f (x), assume xe ∈ Rn is an equilibrium, f (xe) = xe

ensure (asymptotic) stability of xe ∈ D ⊆ Rn (assume D given)

by finding R-valued Lyapunov function V(x), satisfying

1 lower bound:
V(xe) = 0 (1)

2 positive definiteness:
V(x) > 0, ∀x ∈ D \ {xe} (2)

3 negative decrease:

V(f (x))−V(x) < −ϵ, ∀x ∈ D \ {xe} (ϵ > 0) (3)

−10 −5 0 5 10−10

0

10
0

20

40

60

80

100

120

140

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 11 /25

Lyapunov functions for stability

consider x+ = f (x), assume xe ∈ Rn is an equilibrium, f (xe) = xe

ensure (asymptotic) stability of xe ∈ D ⊆ Rn (assume D given)

by finding R-valued Lyapunov function V(x), satisfying

1 lower bound:
V(xe) = 0 (1)

2 positive definiteness:
V(x) > 0, ∀x ∈ D \ {xe} (2)

3 negative decrease:

V(f (x))−V(x) < −ϵ, ∀x ∈ D \ {xe} (ϵ > 0) (3)

that is, solve following synthesis problem:

∃V : D → R s.t. ∀x ∈ D, conditions (1)∧ (2)∧ (3) hold

feed 2nd-order logical formula above to SMT solver

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 11 /25

Barrier certificates for safety

consider x+ = f (x), along with sets I (initial) and U (unsafe)

ensure there exists no trajectory starting in I ever entering U

1 negativity within initial set I :

B(x) ≤ 0, ∀x ∈ I
2 positivity within unsafe set U :

B(x) > 0, ∀x ∈ U
3 set invariance property via negative decrease:

B(f (x))− B(x) < 0, ∀x ∈ (U ∪ I)C

again, feed a 2nd-order logical formula to SMT solver

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 12 /25

Barrier certificates for safety

1 negativity within initial set I :

B(x) ≤ 0, ∀x ∈ I
2 positivity within unsafe set U :

B(x) > 0, ∀x ∈ U
3 set invariance property via negative decrease:

B(f (x))− B(x) < 0, ∀x ∈ (U ∪ I)C

again, feed a 2nd-order logical formula to SMT solver

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 12 /25

Barrier certificates for safety

consider x+ = f (x), along with sets I (initial) and U (unsafe)

ensure there exists no trajectory starting in I ever entering U
by finding barrier function B(x), satisfying

1 negativity within initial set I :

B(x) ≤ 0, ∀x ∈ I

2 positivity within unsafe set U :

B(x) > 0, ∀x ∈ U

3 set invariance property via negative decrease:

B(f (x))− B(x) < 0, ∀x ∈ (U ∪ I)C

again, feed a 2nd-order logical formula to SMT solver

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 12 /25

Ranking functions for termination/halting/reachability
consider probabilistic program x+ = f (x, w):

while (x > 0):

if prob(0.75) {
x-- }

ensure that, for any x ≥ 0, F(x ≤ 0) holds almost surely (with probability 1)

by finding ranking function V(x), satisfying

1 V(0) = 0
2 x > 0→ V(x) > 0
3 x > 0→ E[V(f (x))] ≤ V(x)− ϵ

namely, if x > 0, V(x) decreases in expectation by ϵ (positive constant)

4 3 2 1 0

Haltϵ-dec ϵ-dec ϵ-dec ϵ-dec

e.g., V(x) = x ≥ 0 & decreases in expectation by say ϵ = 3/4

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 13 /25

Ranking functions for termination/halting/reachability
consider probabilistic program x+ = f (x, w):

while (x > 0):

if prob(0.75) {
x-- }

ensure that, for any x ≥ 0, F(x ≤ 0) holds almost surely (with probability 1)

by finding ranking function V(x), satisfying

1 V(0) = 0
2 x > 0→ V(x) > 0
3 x > 0→ E[V(f (x))] ≤ V(x)− ϵ

namely, if x > 0, V(x) decreases in expectation by ϵ (positive constant)

4 3 2 1 0

Haltϵ-dec ϵ-dec ϵ-dec ϵ-dec

e.g., V(x) = x ≥ 0 & decreases in expectation by say ϵ = 3/4

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 13 /25

Ranking functions for termination/halting/reachability
consider probabilistic program x+ = f (x, w):

while (x > 0):

if prob(0.75) {
x-- }

ensure that, for any x ≥ 0, F(x ≤ 0) holds almost surely (with probability 1)

by finding ranking function V(x), satisfying

1 V(0) = 0
2 x > 0→ V(x) > 0
3 x > 0→ E[V(f (x))] ≤ V(x)− ϵ

namely, if x > 0, V(x) decreases in expectation by ϵ (positive constant)

4 3 2 1 0

Haltϵ-dec ϵ-dec ϵ-dec ϵ-dec

e.g., V(x) = x ≥ 0 & decreases in expectation by say ϵ = 3/4

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 13 /25

Counterexample-guided Inductive Synthesis (CEGIS)

Learner Verifier

V

c

f (x),D

V
valid

1. Learner

generates candidates V over
finite set S

2. Verifier

certifies validity on D, or
provides counterexample(s) c

inductive synthesis loop

1. sample (finite) set S ⊂ D

2. Learner generates V(θ, ·) via query SMT solver on formula:
∃θ ∈ Θ : proof rule holds on points s ∈ S

3. Verifier checks either V(·, x) valid over dense D, or counterexample c :
query SMT solver on formula ∃c ∈ D : proof rule does not hold on c

4. S← S ∪ c, loop back to 2

sound, but not complete: infinite search space (θ ∈ Θ) and domain (x ∈ D)
A. Abate, oxcav.web.ox.ac.uk Neural Proofs 14 /25

Neural Inductive Synthesis

Learner Verifier

V

c

f (x),D

V
valid

1. Learner

generates candidates V over
finite set S

2. Verifier

certifies validity on D, or
provides counterexample(s) c

inductive synthesis loop

1. sample (finite) set S ⊂ D

2. Learner trains neural V(θ, ·) via loss function L;
L penalises deviations from conditions in proof rules

3. Verifier checks either V(·, x) valid over dense D, or counterexample c :
query SMT solver on formula ∃c ∈ D : proof rule does not hold on c

4. S← S ∪ c, loop back to 2

sound, but not complete: infinite search space (θ ∈ Θ) and domain (x ∈ D)
A. Abate, oxcav.web.ox.ac.uk Neural Proofs 14 /25

Neural networks as Lyapunov functions

neural nets are general and flexible

(universal function approximators)

Learner trains shallow neural network

V(x) = W2 · σ1(W1x + b1)

(Wi weights, (σ1) activation fcns)

σ1

σ1

W1 W2

loss function enforces Lyapunov conditions in (1)+(2) and (3) on points in S:

L(S) = | V(0) | + ∑
s∈S

max{0,−V(s)}+ ∑
s∈S

max{0, V(f (s))−V(s) + ϵ}

loss function L is “pretty good” proxy of synthesis formula

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 15 /25

Neural networks as Lyapunov functions

Learner Verifier

V

c

f (x),D

V
valid

surprisingly effective! Communication Learner ↔ Verifier is crucial

loss function enforces Lyapunov conditions in (1)+(2) and (3) on points in S:

L(S) = | V(0) | + ∑
s∈S

max{0,−V(s)}+ ∑
s∈S

max{0, V(f (s))−V(s) + ϵ}

loss function L is “pretty good” proxy of synthesis formula

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 15 /25

Synthesis of Lyapunov functions - example

x c-ex x c-ex NO c-ex

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 16 /25

Synthesis of barrier certificates - examples

{
x+ = y + 2xy
y+ = −x + 2x2 − y2 [10] · Linear

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 17 /25

Synthesis of barrier certificates - examples

{
x+ = exp(−x) + y− 1
y+ = − sin(x)2

[20] · Softplus

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 17 /25

Synthesis of barrier certificates - examples

{
x+ = y
y+ = −x− y + 1

3 x3 [20, 20] · Sigmoid, Sigmoid

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 17 /25

Synthesis of control certificates for complex tasks
dynamical models with inputs (a.k.a., external non-determinism)

x+ = f (x, u)

→ synthesis of “control certificates”

modify known synthesis problem:

∃V : D → R s.t. ∀x ∈ D conditions (1)∧ (2)∧ (3) hold

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Phase Plane

ROA for NL model,
non-poly Lyapunov,
2 disjoint initial sets

2
1

0

1

2 2
1

0
1

2

20
0
20
40
60
80
100
120

RWS Certificate

RWA: reach-while-avoid

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Phase Plane

Domain
Safe
Initial
Goal
Final

RAR certificate for
closed-loop NL model

dashed lines: level sets; dark blue: I ; light blue: S ; green: G; orange: F

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 18 /25

Synthesis of control certificates for complex tasks
dynamical models with inputs (a.k.a., external non-determinism)

x+ = f (x, u)

→ synthesis of “control certificates”

approach:
1 control policies are also NN-templated
2 concurrent synthesis controls and corresponding certificates

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Phase Plane

ROA for NL model,
non-poly Lyapunov,
2 disjoint initial sets

2
1

0

1

2 2
1

0
1

2

20
0
20
40
60
80
100
120

RWS Certificate

RWA: reach-while-avoid

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Phase Plane

Domain
Safe
Initial
Goal
Final

RAR certificate for
closed-loop NL model

dashed lines: level sets; dark blue: I ; light blue: S ; green: G; orange: F

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 18 /25

Synthesis of control certificates for complex tasks
dynamical models with inputs (a.k.a., external non-determinism)

x+ = f (x, u)

→ synthesis of “control certificates”

(back to) broad class of properties/requirements

∀x0 ∈ I , ∃T ∈N, ∀t ∈ {0, . . . , T − 1}, ∀τ ≥ T :
xT ∈ G, xt ̸∈ U , xτ ∈ F

x⇤I

a: Stability

I

x⇤

b: ROA

I

U

c: Safety

I

U
x⇤

d: SWA

I

G

e: Reachability

I

G

U

f: RWA

I

F

G

U

g: RSWA

I

G

F

U

h: RAR

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Phase Plane

ROA for NL model,
non-poly Lyapunov,
2 disjoint initial sets

2
1

0

1

2 2
1

0
1

2

20
0
20
40
60
80
100
120

RWS Certificate

RWA: reach-while-avoid

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Phase Plane

Domain
Safe
Initial
Goal
Final

RAR certificate for
closed-loop NL model

dashed lines: level sets; dark blue: I ; light blue: S ; green: G; orange: F

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 18 /25

Synthesis of control certificates for complex tasks
dynamical models with inputs (a.k.a., external non-determinism)

x+ = f (x, u)

→ synthesis of “control certificates”EDWARDS et al.: A GENERAL VERIFICATION FRAMEWORK FOR DYNAMICAL AND CONTROL MODELS VIA CERTIFICATE SYNTHESIS 9

Ns Nu Property Neurons Activations T (s) Success (%)

min µ max S

1 2 0 Stability [6] ['2] 0.01 (⇡ 0.00) 0.16 (0.15) 1.50 (1.48) 100
2 3 0 Stability [8] ['2] 0.28 (⇡ 0.00) 2.22 (0.45) 12.57 (3.31) 100
3 2 2 Stability [4] ['2] 0.07 (0.01) 0.19 (0.02) 0.47 (0.04) 100
4 2 2 Stability [5] ['2] 0.09 (0.01) 0.26 (0.02) 0.54 (0.03) 100

5 2 0 ROA [5] [�soft] 0.21 (0.12) 14.09 (12.59) 25.32 (22.13) 40
6 3 3 ROA [8] ['2] 1.24 (0.02) 39.08 (0.03) 287.89 (0.04) 100

7 2 0 Safety [15] [�t] 0.44 (0.35) 3.36 (2.90) 7.61 (7.11) 100
9 8 0 Safety [10] ['1] 12.63 (7.71) 51.97 (32.75) 70.59 (44.66) 70
10 3 1 Safety [15] [�t] 1.57 (0.19) 11.87 (2.50) 51.08 (7.52) 90

11 3 0 SWA [6], [5] ['2], [�t] 0.19 (0.05) 2.46 (0.100) 12.10 (0.20) 90
12 2 0 SWA [5], [5, 5] ['2], [�sig,'2] 0.13 (0.06) 0.27 (0.14) 0.39 (0.20) 100
13 2 1 SWA [8], [5] ['2], ['2] 0.06 (0.03) 0.20 (0.10) 0.58 (0.24) 90
14 3 1 SWA [10], [8] ['2], [�t] 4.06 (0.87) 19.81 (2.73) 103.49 (7.23) 90

15 2 0 RWA [4] ['2] 0.14 (0.09) 1.81 (1.75) 4.70 (4.63) 100
16 3 0 RWA [16] ['2] 1.36 (0.09) 14.10 (0.14) 72.97 (0.20) 90
17 2 1 RWA [4, 4] [�sig,'2] 0.59 (0.27) 6.82 (3.32) 20.07 (11.46) 100
18 3 1 RWA [5] ['2] 0.46 (0.11) 16.06 (5.81) 72.47 (44.64) 80
19 2 2 RWA [5] [�sig] 0.69 (0.40) 1.38 (0.94) 2.14 (1.90) 100

20 2 0 RSWA [4] ['2] 0.19 (0.03) 1.29 (1.04) 3.79 (3.37) 100
21 3 0 RSWA [16] ['2] 4.81 (0.13) 27.14 (0.19) 80.95 (0.25) 100
22 2 0 RSWA [5, 5] [�sig,'2] 1.52 (0.06) 4.45 (0.19) 10.97 (0.35) 100
23 2 1 RSWA [8] ['2] 0.21 (0.05) 0.67 (0.25) 1.19 (0.91) 100
24 2 2 RSWA [5, 5] [�sig,'2] 0.98 (0.16) 1.23 (0.28) 1.61 (0.46) 100

25 2 0 RAR [6], [6] [�soft], ['2] 6.65 (1.08) 24.74 (6.46) 77.80 (15.06) 100
26 2 2 RAR [6, 6], [6, 6] [�sig,'2], [�sig,'2] 5.13 (1.34) 26.99 (9.90) 101.23 (60.14) 100

TABLE I: Results of synthesising certificates for all properties presented in this work. The first column indexes the benchmarks.
Ns: Number of states, Nu: number of control inputs. We show the Property being verified and network structure (Neurons and
Activations). For certificates of two functions, comma-separated lists shows the different structures. Finally, we report success
rate (S) and the minimum, mean (µ) and maximum computation time T over successful runs, in seconds. In brackets we show
the time spent during the learning phase.

continuous-time models, both autonomous and controlled.
Further, Fossil 2.0 can verify stability and safety properties
for discrete-time models (the discussion of which is omitted
for brevity). The extension to all the presented properties
in discrete time is matter of future work. We showcase the
efficacy of our framework and corresponding tool across 26
benchmarks, borrowed from existing literature on certificate
synthesis [10], [50], [55], [63]. Note that, in some cases,
we have modified these benchmarks to further challenge our
approach, for instance by using disjoint, non-convex sets in the
specifications. We consider a key strength of our approach to
be its flexibility - we are able to perform well on straight-
forward and challenging benchmarks using certificates that
represent both polynomials and more complex non-polynomial
functions (as determined by the activation function of the neu-
ral network). We reflect this in our selection of benchmarks,
including dynamics that are relatively simple and dynamics
that involve transcendental and trigonometric functions. Due
to the large number of benchmarks, details on the dynamics
and sets can be found in an extended version of this paper [64],
and in the corresponding code-base, https://github.com/oxford-
oxcav/fossil, where additional benchmarks can be also found.

The results are reported in Table I, where for each bench-
mark we outline the number of variables Ns and of control
input Nu, the property to be verified (cf. acronyms introduced
earlier), the number of neurons in each hidden layer and

the corresponding activation functions for these layers. The
number of neurons is denoted as a list, e.g. [n1, n2] indicates
that the first and second hidden layers are composed of n1 and
n2 neurons, respectively. The activation functions for these
hidden layers are denoted similarly. As mentioned, a strength
of our methodology is its flexibility in terms of the form that
certificates may take: we are able to synthesise polynomial
certificates as well as non-polynomial certificates that repre-
sent more “neural-typical” functions – this is illustrated in
the “Activations” column of Table I. By 'j we denote that
the layer represents a polynomial function of order j; �sig
represents the sigmoid function, �t represents the hyperbolic
tangent function and �soft is the softplus function.

For almost all benchmarks, we use a linear control function.
Our approach can handle more general nonlinear templates,
but we emphasise that, as we solve a verification problem,
rather than a control problem, we only seek a feedback law
such that the property is satisfied by the closed-loop dynamics,
and thus offer no guarantee on the optimality of this controller.
Still, we use a nonlinear controller employing �t functions for
the benchmark number 10 of Table I.

We measure the robustness performance by running each
experiment 10 times, where we initialise the network with
different weights and a new dataset across separate random
seeds. Our procedure is not guaranteed to terminate, so after a
maximum number of CEGIS loops we stop it and consider the

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Phase Plane

ROA for NL model,
non-poly Lyapunov,
2 disjoint initial sets

2
1

0

1

2 2
1

0
1

2

20
0
20
40
60
80
100
120

RWS Certificate

RWA: reach-while-avoid

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Phase Plane

Domain
Safe
Initial
Goal
Final

RAR certificate for
closed-loop NL model

dashed lines: level sets; dark blue: I ; light blue: S ; green: G; orange: F

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 18 /25

Synthesis of control certificates for complex tasks

dynamical models with inputs (a.k.a., external non-determinism)

x+ = f (x, u)

→ synthesis of “control certificates”

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Phase Plane

ROA for NL model,
non-poly Lyapunov,
2 disjoint initial sets

2
1

0

1

2 2
1

0
1

2

20
0
20
40
60
80
100
120

RWS Certificate

RWA: reach-while-avoid

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Phase Plane

Domain
Safe
Initial
Goal
Final

RAR certificate for
closed-loop NL model

dashed lines: level sets; dark blue: I ; light blue: S ; green: G; orange: F

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 18 /25

Software for Neural Synthesis - Fossil 2.0

.py

.yaml

Fossil 2.0
Problem

Parser/
Interpreter

Synthesis Engine

Learner

Verifier (SMT Solvers)

Z3 CVC5 dReal

Enhanced
Communication

Valid Controller
and Certificate

Unknown

github.com/oxford-oxcav/fossil

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 19 /25

Ranking certificates as supermartingales

almost-sure (w.p. 1) countable-state program termination

can be extended to

continuous state spaces
control synthesis
quantitative termination (e.g., via supermartingale inequalities)

. . . and to whole-LTL quantitative model checking and design of gMDP

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 20 /25

Ranking certificates as supermartingales

almost-sure (w.p. 1) countable-state program termination

can be extended to

continuous state spaces
control synthesis
quantitative termination (e.g., via supermartingale inequalities)

. . . and to whole-LTL quantitative model checking and design of gMDP

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 20 /25

Proof rule for almost-sure Streett acceptance

consider Markov chain x+ = f (x, w), along with Streett pair:

GF(A) =⇒ GF(B) A, B ⊆ State

Streett Supermartingale Proof Rule [AA et al, CAV24]

∃ function V : State→ R≥0,

In B: allow V to increase in expectation by M (positive const)

In A ∖ B: decrease V in expectation by ϵ (positive const)

Otherwise: ensure V does not increase in expectation

V is non-negative and almost a supermartingale

allow increase in B

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 21 /25

Proof rule for almost-sure Streett acceptance

A B

0-inc ϵ-dec 0-inc M-inc 0-inc 0-inc 0-inc 0-inc
✓

finite A’s
finite B’s

GF(A) =⇒ GF(B)?

A B B

0-inc ϵ-dec 0-inc M-inc 0-inc 0-inc 0-inc M-inc

✓
finite A’s
infinite B’s

A B A

0-inc ϵ-dec 0-inc M-inc 0-inc ϵ-dec 0-inc 0-inc

✗ infinite A’s
finite B’s

A B A B

0-inc ϵ-dec 0-inc M-inc 0-inc ϵ-dec 0-inc M-inc

✓
infinite A’s
infinite B’s

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 21 /25

Experiments

I - invariance generation

V - verification (certificate synthesis)

C - control synthesis

Benchmark ω-Regular Specification Output Time [s]
EvenOrNegative GF(x even) ∨ FG(x < 0) V 0.09
SafeRWalk1 G(x < 100) VIC 1.09
PersistRW FG(x ≤ 10) VI 1.16
RecurRW GF(x > 100) VI 1.49
SafeRWalk2 G(x ≥ 10) VIC 1.09
GuaranteeRW G(x ≥ −10)→ F(x ≥ 103) VI 5.61
Temperature1 FG(¬Hot∧ ¬Cold) VIC 4.11
Temperature2 GF(x ≤ 30) ∧ G(x ≤ 60) VI 28.93
Temperature3 G(Safe) ∧ [GF(Cold)→ GF(Hot)] VIC 28.58
Temperature4 G(Safe) ∧ [GF(Cold)→ GF(Hot)] VC 4.64
FinMemoryControl GF(x ≤ 0)→ GF(x ≥ 100) VIC 16.73

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 22 /25

Outline

1 Context

2 Neural Proofs - Formal Synthesis of Neural Certificates

3 Synthesis of Formal Abstractions

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 23 /25

Outline

1 Context

2 Neural Proofs - Formal Synthesis of Neural Certificates

3 Synthesis of Formal Abstractions

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 23 /25

Formal abstractions

SAT,

model

checking

?
abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 24 /25

Formal abstractions

SAT,

model

checking

?
abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 24 /25

Formal abstractions

SAT,

model

checking

?

abstract
ξ-model

specification

abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 24 /25

Formal abstractions

SAT,

model

checking

?

abstract
model

ξ-specification

automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 24 /25

Formal abstractions

SAT,

model

checking

?

abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 24 /25

Formal abstractions

SAT,

model

checking

?
abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 24 /25

Formal abstractions

SAT,

model

checking

?
abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 24 /25

Formal abstractions

SAT,

model

checking

?
abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 24 /25

Formal abstractions

SAT,

model

checking

?
abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification

@
@

@
@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 24 /25

Formal abstractions

SAT,

model

checking

?
abstract
model

ξ-specification
automated

verification

-

ξ-spec holds,
policy µξ |= ξ-spec

6
ξ-quantitative
abstraction

?

refine back

complex
model

specification
@

@
@

@I

if not,

tune ξ

spec holds,
policy µ |= spec

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 24 /25

1 Context

2 Neural Proofs - Formal Synthesis of Neural Certificates

3 Synthesis of Formal Abstractions

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 25 /25

Thank you for your attention

oxcav.web.ox.ac.uk

All images used are under Wikimedia CCAS license, or by author

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 25 /25

Selected References on Inductive (SMT and Neural) Synthesis (of Certificates/Controllers/Models)

L. Rickard, A. Abate, K. Margellos, “Data-Driven Neural Certificate Synthesis,” arXiv:2502.05510, 2025.

A. Edwards, A. Peruffo and A. Abate, “Fossil 2.0: Design, Usage and Impact of a Software Tool for Verification and Control of Dynamical
Models,” Science of Computer Programming, v. 247, Jan 2026.

A. Abate, M. Giacobbe, and D. Roy, “Quantitative Supermartingale Certificates,” CAV25, LNCS 15934, pp. 3-28, 2025.

A. Edwards, A. Peruffo and A. Abate, “A General Verification Framework for Dynamical and Control Models via Certificate Synthesis,”
arXiv:2309.06090, 2024.

A. Abate, M. Giacobbe, and D. Roy, “Stochastic Omega-Regular Verification and Control with Supermartingales,” CAV24, LNCS 14683, pp.
395-419, 2024.

A. Edwards, A. Peruffo and A. Abate, “Fossil 2.0: Formal Certificate Synthesis for the Verification and Control of Dynamical Models,” HSCC24,
In Press, 2024.

A. Abate, A. Edwards, M. Giacobbe, H. Punchihewa, and D. Roy, “Quantitative Neural Verification of Probabilistic Programs,” CONCUR23,
arXiv:2301.06136, 2023.

D. Roy, M. Giacobbe, and A. Abate, “Learning Probabilistic Termination Proofs,” CAV21, LNCS 12760, pp. 3–26, 2021.

A. Abate, D. Ahmed, A. Edwards, M. Giacobbe and A. Peruffo, “FOSSIL: A Software Tool for the Formal Synthesis of Lyapunov Functions and
Barrier Certificates using Neural Networks,” HSCC21, pp. 1-11, 2021.

A. Abate, D. Ahmed and A. Peruffo, “Automated Formal Synthesis of Neural Barrier Certificates for Dynamical Models,” TACAS21, LNCS
12651, pp. 370–388, 2021.

D. Ahmed, A. Peruffo and A. Abate, “Automated and Sound Synthesis of Lyapunov Functions with SMT Solvers,” TACAS20, LNCS 12078, pp.
97-114, 2020.

A. Abate, D. Ahmed, M. Giacobbe and A. Peruffo “Automated Formal Synthesis of Lyapunov Neural Networks,” IEEE Control Systems Letters, 5
(3), 773-778, 2020.

A. Edwards, M. Giacobbe, and A. Abate, “On the Trade-off Between Efficiency and Precision of Neural Abstraction,” QEST23, LNCS 14287, pp.
152-171, 2023.

A. Abate, A. Edwards, and M. Giacobbe, “Neural Abstractions,” NeurIPS22, Advances in Neural Information Processing Systems 35,
26432-26447, 2022.

A. Abate, H. Barbosa, C. Barrett. C. David, P. Kesseli, D. Kroening, E. Polgreen, A. Reynolds, C. Tinelli, “Synthesising programs with non-trivial
constants,” Journal of Automated Reasoning (JAR), 67(2):19, 2023.

A. Abate, I. Bessa, D. Cattaruzza, L. Cordeiro, C. David, P. Kesseli, D. Kroening and E. Polgreen, “Automated Formal Synthesis of Provably Safe
Digital Controllers for Continuous Plants,” Acta Informatica, 57(3), 2020.

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 25 /25

Selected Journal References on Model- and Sample-Based Formal Abstractions (Not discussed in this talk)

T. Badings, L Romao, A. Abate, D. Parker, H. Poonawala, M. Stoelinga and N. Jansen, “Robust Control for Dynamical Systems with
Non-Gaussian Noise via Formal Abstractions,” JAIR, vol 76, pp.341-391, 2023.

T.S. Badings, A. Abate, N. Jansen, D. Parker, H.A. Poonawala, and M. Stoelinga, “Sampling-Based Robust Control of Autonomous Systems with
Non-Gaussian Noise,” AAAI22, 36 (9), pp. 9669-9678, 2022.

A. Lavaei, S. Soudjani, A. Abate, and M. Zamani, “Automated Verification and Synthesis of Stochastic Hybrid Systems: A Survey,” Automatica,
vol. 146, Dec. 2022.

L. Laurenti, M. Lahijanian, A. Abate, L. Cardelli and M. Kwiatkowska, “Formal and Efficient Control Synthesis for Continuous-Time Stochastic
Processes,” IEEE Transactions on Automatic Control, vol. 66, no. 1, pp. 17-32, Jan 2021.

S. Haesaert, S.E.Z. Soudjani, and A. Abate, “Verification of general Markov decision processes by approximate similarity relations and policy
refinement,” SIAM Journal on Control and Optimisation, vol. 55, nr. 4, pp. 2333-2367, 2017.

I. Tkachev, A. Mereacre, J.-P. Katoen, and A. Abate, “Quantitative Model Checking of Controlled Discrete-Time Markov Processes,” Information
and Computation, vol. 253, nr. 1, pp. 1–35, 2017.

S. Haesaert, N. Cauchi and A. Abate, “Certified policy synthesis for general Markov decision processes: An application in building automation
systems,” Performance Evaluation, vol. 117, pp. 75-103, 2017.

S.E.Z. Soudjani and A. Abate, “Aggregation and Control of Populations of Thermostatically Controlled Loads by Formal Abstractions,” IEEE
Transactions on Control Systems Technology. vol. 23, nr. 3, pp. 975–990, 2015.

S.E.Z. Soudjani and A. Abate, “Quantitative Approximation of the Probability Distribution of a Markov Process by Formal Abstractions,” Logical
Methods in Computer Science, Vol. 11, nr. 3, Oct. 2015.

M. Zamani, P. Mohajerin Esfahani, R. Majumdar, A. Abate, and J. Lygeros, “Symbolic control of stochastic systems via approximately bisimilar
finite abstractions,” IEEE Transactions on Automatic Control, vol. 59 nr. 12, pp. 3135-3150, Dec. 2014.

I. Tkachev and A. Abate, “Characterization and computation of infinite horizon specifications over Markov processes,” Theoretical Computer
Science, vol. 515, pp. 1-18, 2014.

S. Soudjani and A. Abate, “Adaptive and Sequential Gridding for Abstraction and Verification of Stochastic Processes,” SIAM Journal on Applied
Dynamical Systems, vol. 12, nr. 2, pp. 921-956, 2013.

A. Abate, J.P Katoen, J. Lygeros and M. Prandini, “Approximate Model Checking of Stochastic Hybrid Systems,” European Journal of Control,
16(6), 624-641, 2010.

A. Abate, M. Prandini, J. Lygeros and S. Sastry, “Probabilistic Reachability and Safety Analysis of Controlled Discrete-Time Stochastic Hybrid
Systems,” Automatica, 44(11), 2724-2734, Nov. 2008.

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 25 /25

Almost-sure proof rules

so far we have seen that:

ranking supermartingales for almost-sure reachability
(Chakarov/Sankaranarayanan, CAV’13)

almost sure persistence & recurrence
(Chakarov/Voronin/Sankaranarayanan, TACAS’16)

Streett supermartingales for almost-sure reactivity conditions

(AA et. al., CAV’24)

and indeed many other similar proof rules . . .

restrict state space to supporting invariant I ⊆ State, so that:

P (Specification | G I) = 1

now, we can generalise any almost-sure proof rule to quantitative
supermartingale certificates:

P (Specification) ≥ p

this is done via a “decomposition”

(AA et. al., CAV’25)

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 25 /25

Almost-sure proof rules

so far we have seen that:

ranking supermartingales for almost-sure reachability
(Chakarov/Sankaranarayanan, CAV’13)

almost sure persistence & recurrence
(Chakarov/Voronin/Sankaranarayanan, TACAS’16)

Streett supermartingales for almost-sure reactivity conditions

(AA et. al., CAV’24)

and indeed many other similar proof rules . . .

restrict state space to supporting invariant I ⊆ State, so that:

P (Specification | G I) = 1

now, we can generalise any almost-sure proof rule to quantitative
supermartingale certificates:

P (Specification) ≥ p

this is done via a “decomposition”

(AA et. al., CAV’25)

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 25 /25

Almost-sure proof rules

so far we have seen that:

ranking supermartingales for almost-sure reachability
(Chakarov/Sankaranarayanan, CAV’13)

almost sure persistence & recurrence
(Chakarov/Voronin/Sankaranarayanan, TACAS’16)

Streett supermartingales for almost-sure reactivity conditions

(AA et. al., CAV’24)

and indeed many other similar proof rules . . .

restrict state space to supporting invariant I ⊆ State, so that:

P (Specification | G I) = 1

now, we can generalise any almost-sure proof rule to quantitative
supermartingale certificates:

P (Specification) ≥ p

this is done via a “decomposition”

(AA et. al., CAV’25)

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 25 /25

Decomposing Quantitative Probabilistic Verification

soundness of decomposition - suppose:
1 P(Specification | G I) = 1
2 P(G I) ≥ p

then P(Specification) ≥ p

special case:
1 if P(Streett acceptance | G I) = 1

(e.g., via Streett supermartingale & supporting invariant, [AA et. al., CAV’24])
2 if P(G I) ≥ p

(e.g., via stochastic invariant (supermartingale) [Kushner, 1965] or repulsing
supermartingales [Chatterjee et.al., POPL’17][Takisaka et.a., ATVA’18])

then P(Streett acceptance) ≥ p

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 25 /25

Decomposing Quantitative Probabilistic Verification

soundness of decomposition - suppose:
1 P(Specification | G I) = 1
2 P(G I) ≥ p

then P(Specification) ≥ p

special case:
1 if P(Streett acceptance | G I) = 1

(e.g., via Streett supermartingale & supporting invariant, [AA et. al., CAV’24])
2 if P(G I) ≥ p

(e.g., via stochastic invariant (supermartingale) [Kushner, 1965] or repulsing
supermartingales [Chatterjee et.al., POPL’17][Takisaka et.a., ATVA’18])

then P(Streett acceptance) ≥ p

A. Abate, oxcav.web.ox.ac.uk Neural Proofs 25 /25

Completeness of Decomposition

question: does there always exist a region I ⊆ State such that:
1 P(Specification | G I) = 1,
2 P(G I) = P(Specification)

poositive answer: suppose L is a shift-invariant specification5,
then the following holds:

Theorem (ε-completeness for gMC)

For every ε > 0, there exists a region I such that

1 P(L | G I) = 1
2 P(G I) ≥ P(L)− ε

Theorem (Completeness for finite MC)

There exists a region I such that

1 P(L | G I) = 1
2 P(G I) = P(L)

5A language is invariant under addition/deletion of any finite prefix to an infinite trajectory
A. Abate, oxcav.web.ox.ac.uk Neural Proofs 25 /25

Completeness of Decomposition

question: does there always exist a region I ⊆ State such that:
1 P(Specification | G I) = 1,
2 P(G I) = P(Specification)

poositive answer: suppose L is a shift-invariant specification5,
then the following holds:

Theorem (ε-completeness for gMC)

For every ε > 0, there exists a region I such that

1 P(L | G I) = 1
2 P(G I) ≥ P(L)− ε

Theorem (Completeness for finite MC)

There exists a region I such that

1 P(L | G I) = 1
2 P(G I) = P(L)

5A language is invariant under addition/deletion of any finite prefix to an infinite trajectory
A. Abate, oxcav.web.ox.ac.uk Neural Proofs 25 /25

	Context
	Neural Proofs - Formal Synthesis of Neural Certificates
	Synthesis of Formal Abstractions

